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1. General Introduction

1. General Introduction

1.1. Physical motivation of the research

Molecules and crystals that contain heavy elements, in particular 5d transition metals

and rare earths, are of growing interest in chemistry and physics. For instance the

diversity of gold chemistry1, the catalytic activity of platinum2 and the luminescence

of lanthanide-doped crystals3 can be mentioned as examples of recent studies.

Whereas spectra and other properties of light atoms and molecules can be satisfactory

explained in a non-relativistic quantum mechanical model, one has to consider the

theory of relativity if one deals with elements that belong to the lower regions of the

periodic table.

In chemistry the most well known shortcoming of the non-relativistic quantum theory

is the ad hoc introduction of electron spin and the neglect of spin-orbit coupling. The

coupling between the spin and orbital momentum breaks the strict spin selection rules

that follow from non-relativistic quantum theory. The influence of this coupling on

spectra may be profound. In the spectrum of mercury for instance we find that the

strong line at 2537 Å arises from the "spin-forbidden" 3P1 → 1S0 transition4. The

effects on chemical bonding are also non-negligible since the l-shells of the atoms are

splitted into j = l ± 1/2 subshells. In the 6p series for instance one finds a separation

between the p1/2 and the p3/2 subshell that is of the order of an electronvolt5. This

large energy difference prohibits formation of strong σ-bonds with these elements

since σ-bonds require participation (hybridisation) of both p1/2 and p3/2 orbitals6.

Other important but not directly observable manifestations of relativity are the mass-

velocity correction and the Darwin correction7. These terms lead to the "relativistic

contraction" of the s- and p-shells and to expansion of the d- and f-shells. A

consequence of this contraction is for instance the stabilisation of the 6s shell that

leads to a considerable increase of the electron affinity of platinum and gold.

Many more examples of chemical consequences of relativity may be found in the

literature4,5,6,8,9,10. The phrase "relativistic effects" that is often used in this context is

a bit misleading since the effects that were described above are of course unphysical.

The atoms do not really contract since there is no "non-relativistic atom" just like

there is no "relativistic atom". The contraction is the difference between the outcome

of different models and has nothing to do with a real physical process.

However, the success and widespread use of the non-relativistic quantum mechanical

model in chemistry makes it worthwhile to investigate its limits and analyse its

deviations from more precise models. The purpose of this work is to derive and use a

formalism that enables such an investigation. The method is based on the Dirac
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equation that describes the motion of an electron in accordance with both the theory

of special relativity and the theory of quantum mechanics.

1.2. Relativistic ab initio calculations

The starting point of non-relativistic quantum chemistry is the Schrödinger equation

that describes the motion of electrons and nuclei. This many-particle equation cannot

be solved exactly and ways to obtain approximate solutions must be found.

In the so-called ab initio type of methods one attempts to solve the many-particle

Schrödinger equation with a minimum of experimental information. The only

parameters that are used are fundamental physical constants like the masses and

charges of the electron and nuclei. The quality of the outcome depends on the validity

of the approximations that were made to make the problem computationally feasible

and on the numerical accuracy that can be attained.

The motion of the nuclei and the electrons can be separated in the Born-

Oppenheimer11 approximation by assuming that the time-scale of electronic

movement is much smaller than that of nuclear movement. We then obtain with a

many-electron equation in which the interaction with the nuclei is represented by an

electric field. A commonly used approximation scheme for this many-electron

equation is the Hartree-Fock method that reduces it to an effective one-electron

equation. The many-electron wave functions that are formed from the solutions of the

latter equation differ from the exact solutions of the hamiltonian by the absence of

terms that account for the correlation between the motion of electrons with different

spin. This correlation, which may be of key importance in the determination of the

ground state or structure of a molecule, can be treated by a number of accurate, but

computationally more demanding, post Hartree-Fock methods. Well known

methods12 are the Multi Configurational Self Consistent Field (MCSCF) method, the

Configuration Interaction (CI) method and the Coupled Cluster (CC) method.

Alternatively, instead of using one of these explicitly correlated methods, one may

employ Density Functional13 methods that implicitly account for electron correlation.

In the past decades these ab initio  methods based on the Schrödinger equation have

been successfully applied to the calculation of physical and chemical properties of a

variety of (small) molecules. Computer codes that may be used for such ab initio

calculations have become widely available and are becoming a standard and easy to

use tool in chemical research.

In most codes relativity is, however, either not treated, or treated by the use of

relativistic effective potentials. In the latter case the core electrons are replaced by an

effective potential that is fitted to the solutions of atomic relativistic calculations. In

addition some of the scalar relativistic terms may be incorporated. The remaining
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1. General Introduction

term,  the spin-orbit coupling,  can be treated as a perturbation in the final stage of the

calculations. This approach gives reasonable results for many molecules, but it may

break down when the magnitude of the spin-orbit coupling and other relativistic

effects becomes comparable in magnitude to the LS-multiplet splittings. This is often

the case in molecules that contain heavy atoms. In such cases the use of perturbation

theory is questionable and verification of the outcome by means of a method that

includes relativistic effects from the outset is desirable.

In 1928 Dirac proposed his famous equation14 that describes the motion of an

electron in accordance with both the laws of special relativity and quantum

mechanics. The many-electron generalisation of his one electron equation, the Dirac-

Coulomb-Breit15 equation is nowadays the starting point for most explicit relativistic

calculations.

The relativistic analogue of the Hartree-Fock method, the Dirac-Fock-(Breit) method

was first formulated by Swirles16 in 1935. For atoms excellent computer

programs17,18 have been constructed that efficiently use the spherical symmetry of the

atom to solve the resulting differential equations by numerical integration. The typical

timings for such calculations are in the order of minutes on a mainframe computer

and calculations may thus be performed in a routine fashion.

For molecules the situation is more difficult. In general, the lack of symmetry

prohibits reduction of the problem to an effective one or two-dimensional equation.

Therefore numerical integration is no longer feasible and basis set expansion

techniques like the ones that are used in non-relativistic molecular Hartree-Fock

calculations become more favourable. Computer codes19,20,21,22,23 which actually

apply this technique to molecules of general shape are recently developed but do still

demand large computer resources. One of the early codes (MOLFDIR) was developed

in Groningen by Aerts24 (closed-shell Dirac-Fock) and later extended by Visser25

(open-shell Dirac-Fock and small CI calculations).

Like the non-relativistic Hartree-Fock method, the Dirac-Fock method does not

include electron correlation. It is hence not suited to give precise quantitative

descriptions of the electronic structure of the complex open-shell systems, that one

often encounters in transition metal or rare earth compounds. More sophisticated

methods that go beyond the mean field approximation and do include electron

correlation are thus desirable. The relativistic direct CI method that is described in

this thesis is an example of such a method.

- 3 -
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1.3. Outline of this thesis

The first two chapters give the physical background of the relativistic CI method. The

fundamental aspects of the relativistic treatment of many electron  systems will be

discussed in chapter 2. After the introduction of the Dirac and Dirac-Coulomb-

(Breit/Gaunt) hamiltonians we consider expansion of these hamiltonians in a basis of

a limited number of determinantal functions. A graphical method to represent such

many-electron function spaces is given and used to define different types of CI

spaces.

Chapters 3 and 4 are dedicated to the technical details of the method. In chapter 3 we

describe the Dirac-Fock-CI method and its implementation in the MOLFDIR

package. Chapter 4 deals with the problems that arise in the construction of contracted

basis functions for the small component parts of the one-electron spinors.

Applications of the relativistic CI-method to a number of molecules are presented in

chapters 5 and 6. In chapter 5 results of our calculations on the PtH molecule with the

Dirac-Fock and the relativistic CI method are compared with results of other types of

calculations and with experimental measurements of this molecule. The change of the

d-d excitation spectra in the series CoF62-, RhF62- and IrF62- is considered in

chapter 6. Calculations on these complex ions have been performed at the non-

relativistic and at the relativistic level of theory to study the influence of relativity in

different rows of the periodic table.

Chapter 7 summarises the work presented in this thesis and gives some suggestions

for further research. The last part of the thesis is an appendix in which the calculation

of CI-matrix elements with the aid of graphical representations of CI-spaces is

demonstrated.
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2. Many electron systems

2.1. Abstract

In this chapter some aspects of the relativistic description of many-electrons systems

will be discussed. We consider briefly the one-electron Dirac equation that describes the

motion of an electron in an electromagnetic field in accordance with both the theory of

special relativity and the theory of quantum mechanics. From the Dirac hamiltonian we

construct the Dirac-Coulomb hamiltonian that can be used for calculations on many-

electron systems like atoms and molecules.

The many-electron wave functions that are the eigensolutions of this equation can be

obtained by the Dirac-Fock-CI method. In the remaining part of this chapter we will

focus on the many-electron expansion space that is used in these methods. We will

introduce a graphical representation of such spaces and consider the reductions of the

full many-electron space that must be made to make the problem computationally

feasible.

2.2. The Dirac equation for the free electron

This relativistic single particle equation was proposed in 1928 by Dirac1 and is usually

written in a covariant form which illustrates the symmetry of space and time in an

elegant way

iγµ∂µ ψ = mc2 ψ (1)

where m is the rest mass of the particle, c is the speed of light and the γµ are the four

Dirac matrices that fulfil the following commutation rules

γµ, γν
+ = 2gµν (2)

with gµν the metric tensor (g00 = 1, g11 = g22 = g33 = -1, other elements 0).

Since we shall use time independent potentials only in the following derivations, we

can split off the explicit time dependence and use the time-independent version of the

equation

c ⋅ p + βmc2  ψ = ε ψ (3)
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by defining β = γ0 and αk = γ0γk (k =1, 3). The α and β matrices are 4 by 4 matrices

which are in the usual form given by

αx = 02 σx
σx 02

 αy = 02 σy
σy 02

αz = 02 σz
σz 02

β = I2 02
02 -I2

(4)

the σ's are the 2x2 Pauli matrices; I2 and 02 are the 2x2 identity and null matrix

respectively. This 4-component spinor equation, which describes the free electron, is in

accordance with the special theory of relativity. The properties and the physical

interpretation of this equation can be found in standard textbooks2,3,4 and will not be

discussed extensively here. Some important points should, however, be summarised at

this stage.

The spectrum of the Dirac equation is unbounded, both from above and from below.

Two types of eigensolutions occur for the free-electron case: solutions that have

eigenvalues above mc2 and solutions with eigenvalues below -mc2. The appearance of

a continuum of negative energy solutions gives rise to conceptual difficulties. There is

no "ground state" of lowest energy, like there is in non-relativistic theory, which

suggests that the electrons may fall down into the negative energy continuum and attain

an infinitely low energy.

Dirac circumvented this problem by defining the vacuum as the situation in which all

states with negative eigenvalues are occupied and all states with positive energy

eigenvalues are unoccupied. This means that additional electrons may not occupy the

negative states due to the Pauli exclusion principle. Excitation of an electron from a

negative energy state to a positive energy state implies the creation of a hole in the filled

continuum "sea of electrons" and a new electron. The negative energy eigensolutions

are then interpreted as solutions for such hole particles with charge +e, positrons, while

the positive energy eigensolutions describe particles with electric charge -e, electrons.

This interpretation is, however, not without problems either, because one has to deal

with the interaction of electrons with the infinite negative background charge from the

filled sea of electrons. This leads to infinities in actual calculations of electron properties

with this theory. The problems were ultimately solved by the theory of renormalised

quantum electrodynamics that was developed in the late forties5.

In chemistry the problems connected with the treatment and interpretation of the

positron solutions are less prominent. The pair creation process that gives rise to such

particles requires energies of the order of 2mc2, which is well beyond the energy range

that applies for ordinary chemical processes.

To stress the partitioning of the spectrum and the different nature of the electron and

positron solutions the 4-component equation is often written as a 2-component equation

for 2-component spinors

- 8 -



2. Many electron systems

mc2.I2 c ⋅ p

c ⋅ p - mc2.I2

 
ψL

ψS
 = ε 

ψL

ψS
(5)

It can be shown that for the positive energy solutions the upper 2-component spinor has

an amplitude of order c larger than the lower 2-component spinor. It is hence called the

large component, while the lower 2-component spinor is called the small component.

2.3. Interaction terms

In our description of the electronic structure of molecules we will use the Born-

Oppenheimer6,7 approximation. The electron-nuclei interaction is then represented by a

static field φ

(mc2 - eφ).I2 c ⋅ p

c ⋅ p (- mc2 - eφ).I2

 
ψL

ψS
 = ε 

ψL

ψS
(6)

The positive potential created by the nuclei leads to the appearance of bound electron

states. To compare the electron eigenvalues with the values found in non-relativistic

theory we will shift the spectrum by -mc2

-eφ.I2 c ⋅ p

c ⋅ p (- eφ- 2mc2).I2

 
ψL

ψS
 = ε 

ψL

ψS
(7)

This single particle equation can be solved exactly for a spherical-symmetric potential.

Unfortunately, the hydrogen(like) atom is the only system in chemistry that can be

treated with this model. The next step is therefore to find a many-particle equation that

can be used for many-electron atoms and molecules. To this end we have to find an

appropriate electron-electron interaction operator.

The Coulomb operator is not invariant under Lorentz operations and is hence not a valid

relativistic operator by itself. It can, however, be shown by the use of quantum

electrodynamics to be the first term of an expansion of the complete interaction. This

complete interaction cannot be written in closed form but has to be obtained by

(diagrammatic) perturbation theory. In this way invariance corrections to the Coulomb

operator may be obtained to (in principle) any order. In practice usually only the next

term in the expansion is kept8 which, in the so-called low frequency limit, yields an
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operator first derived by Breit9. Combining the Coulomb and the Breit interaction we

obtain

gij
Coulomb + Breit = 1

rij
 - 1

2
 i. j

rij
 + i.rij  j.rij

rij
3

(8)

The Breit interaction can be interpreted as consisting of 2 terms: a term that represents

the magnetic interaction between the electrons and a term representing the retardation

due to the finite velocity of the interaction. The magnetic term was also derived by

Gaunt in 192910  and is called the Gaunt interaction.

gij
Coulomb + Gaunt  = 1

rij
 -  i. j

rij
(9)

If we abbreviate the electron-electron interaction operator by gij we can now write a

general many-electron hamiltonian

H = hi∑
i

N

 + 1
2

 gij∑
i ≠ j

N

(10)

and a corresponding many-electron equation

H Ψ(r1,r2,.., rn), = E Ψ(r1,r2,.., rn) (11)

This many-electron equation will be called the Dirac-Coulomb-(Gaunt/Breit) equation

depending on the operator gij that is used. The many-electron Dirac-Coulomb-

(Gaunt/Breit) hamiltonian is, like the original Dirac operator, unbound.

- 10 -
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2.4. Definition of the 1-electron spinor space
To solve equation (11) we will approximate the many-electron wave function Ψ by a

sum of antisymmetrised products (Slater determinants) of orthonormal single particle

functions ψ

Ψ(r1,r2,.., rn) ≅ ΦI (r1,r2,.., rn) CI∑
I

(12)

ΦI (r1, r2,...,rn) = (n!)- 1/2det  ψI1(r1) ψI2(r2) ...ψIn(rn) (13)

The functions ψ will be taken to belong to the positive energy part of an appropriate

single particle spectrum. With this choice the Dirac-Coulomb operator is truncated and

we are left with an operator that is bounded from below. In this description the

contributions of the states with electron-positron pairs are neglected, an approach that is

therefore sometimes called the no-pair approximation11 .

The problem with the method is the determination of the appropriate one-electron spinor

space. It is easily verified that each choice of potential φ in equation (7) yields a

different division of the total spinor space into an electron and a positron part. The

electron-electron interaction further complicates the problem, since in this case no

unique choice of single particle functions exists. For every choice of model function

(like a single determinant) we have the problem that the potential will depend on the

model wave function itself and changes if we optimise the occupied spinors.

We use the Dirac-Fock method to generate single particle spinor spaces. In this method

the division of the one-particle space into a positron and an electron part is determined

variationally. In the formalism the effect of the electron-electron interaction is

approximated by subjecting each electron to the mean field exerted by the others. A

detailed description of the Dirac-Fock method and its implementation in the MOLFDIR

program package will be given in chapter 3.

2.5. Graphical representation of the many-electron expansion space

We will now use the one-particle spinor basis that was obtained by solving the Dirac-

Fock equations to write the hamiltonian in a second quantised form. With the

introduction of the electron creation operator ai+ and annihilation operator aj we can

write our hamiltonian in the following form

H =  i  h  j  ai
+aj∑

i,j

 + ij  g  kl  ai
+aj

+akal∑
i,j,k,l

(14)
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Using the generators of the unitary group Eij = ai+aj and the anticommutation relation

[ai+,aj]+ = δij the hamiltonian can also be written as

H =  i  h  j  Eij∑
i,j

 + ij  g  kl  Eij Ekl - Eil δjk∑
i,j,k,l

(15)

At this point no assumption is made about the range of the indices i, j, k and l, other

than that they should run over positive energy solutions only. The corresponding many

electron space is infinite but not complete since it lacks contributions from determinants

with one or more occupied positron states.

Restriction of the range of the one-particle spinors to a finite number also projects the

many-electron function space onto a space of finite dimension. This space is called the

Full-CI space. It is usually further reduced to make the problem computationally

feasible. We will now introduce a graphical representation of the many-electron space

that is very useful in the discussion of such reductions of the Full CI space to different

types of CI spaces. A general description of such graphical methods to represent many-

electron function spaces may be found in the book by Duch12 .

If we use a finite set of m one-electron spinors to describe a system with n electrons we

can make m
n  antisymmetric product functions or determinants (13). Graphically all

possible determinants with 3 electrons in 6 one-electron spinors can pictured as paths in

a graph (figure 1).

Figure 1 : Graphical representation of a CI space.
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An occupied spinor m1 is represented by an arc connecting vertex (m1-1, n1-1) to

vertex (m1, n1), an unoccupied spinor is represented by an arc connecting vertex

(m1-1, n1) to (m1, n1). The determinant |246| is thus represented by the thick line in

the graph (figure 1).

This graphical representation provides a convenient way of ordering the determinants.

We define the vertex weight W(m1, n1) as the number of different paths that lead from

the top of the graph to this vertex. It is easy to see that this weight can be calculated

recursively using the formula

W(m1, n1) = W(m1-1, n1-1) + W(m1-1, n1) (16)

By definition we take the weight of the starting vertex W(0,0) to be 1. We now define

arc weights in the following way

- All vertical arcs (connecting vertices with the same number of electrons) have 

zero weight.

- The weight Y(m1, n1) of the arc which connects the vertices (m1-1, n1-1) and 

(m1, n1) is equal to W(m1-1, n1).

-  If vertex (m1-1, n1) lies outside the graph its weight and the weight of 

Y(m1, n1) are zero.

The arc weights for the (6 spinor, 3 electron) system are indicated in figure 1. The zero

weights of the vertical arcs are omitted for clarity. A unique index of a path through the

graph (a determinant) can now be defined as

I = 1 + Y(mk, k)∑
k

n
(17)

This so-called reverse lexical ordering gives the upper path |123| index 1 and the lower

path |456| index 20. If we have a situation in which one determinant will dominate the

CI wave function then it is convenient to number the active spinor set in such a way that

the occupied spinors of this determinant precede the unoccupied spinors. This gives

this determinant index 1 while determinants that differ in many places from it, and are

likely to contribute little to the CI wave function, have the highest indices.

2.6. The Restricted Active Space formalism

The size of the Full-CI space increases factorially with the number of spinors. It is

therefore usually not feasible to perform calculations in which all determinants from this

space are allowed to contribute to the many-electron wave function.
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In non-relativistic calculations several ways to reduce the size of a full-CI space to more

tractable dimensions are used. Starting point is usually the Hartree-Fock (or Dirac-

Fock, in our case) wave function. This wave function consists of a single determinant,

for which an optimum set of orbitals (spinors) is calculated. This reduction of the

many-electron function space implies that explicit electron-electron correlation other

than the exchange correlation is ignored. Methods that go beyond this optimised single

determinantal description are therefore called correlated methods.

Correlation energy is defined as the difference between the energy expectation value of

the single-determinantal (Dirac-Fock) wave function and a many-determinantal wave

function. It is sometimes useful to analyse the contributions to the correlation energy in

terms of a static and a dynamical part13 .

The static correlation energy arises from the occurrence of near-degeneracies in the

many-electron spectrum. For a good description of one state from such a near-

degenerate set, all the other states of the degenerate set should also be included within

the many-electron space, a requirement that is incompatible with a single determinantal

space. This part of the correlation energy can usually be accounted for by extension of

the space with a small number of determinants. The wave function is then written as a

short linear combination of determinants that all have rather large coefficients.

The remaining part is called the dynamical electron correlation and shows up as the

contribution of many determinants with small coefficients in the wave function. An

important part of this correction has to do with the interaction of electrons at short

distances, the so-called cusp region. In this region the Coulomb repulsion between the
electrons gives rise to terms containing r12 in the many-electron wave function. Explicit

inclusion of such two-electron terms is not possible in our many-electron basis that is

built from products of one-electron spinors. These terms can, however, be relatively

well approximated by inclusion of determinants that are doubly excited relative to the

reference determinant.

We now focus on the CI spaces that may be defined on the basis of these

considerations. We will show that the Restricted Active Space (RAS) formalism14

provides a very general and convenient way to handle different choices of CI spaces.

In the RAS method we divide our spinors into a core set with low spinor energies, that

is completely filled, an active set that does have variable occupation in the different

determinants and a set of high-lying virtual spinors that do not significantly contribute

to any state of practical interest. This division is shown graphically in figure 2.
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Figure 2 : Graphical representation of a constrained CI space.
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In the remainder we will only draw the active part of the graphs since there is only one

way of passing through the inactive core and through the unoccupied region and the

contribution of these parts of the graph to the index of a path is zero.

In the RASCI method we subdivide the remaining active spinor subset into three

subspaces : RAS1, RAS2 and RAS3 consisting of mR1, mR2 and mR3 spinors

respectively. In RAS1 we will usually put the active spinors that belong to the occupied

spinors (closed shells) of the reference wave function, in RAS2 we put the spinors that

have variable occupation (open shell) in the reference wave function and RAS3 contains

the active spinors that are unoccupied in the reference wave function.

We then take the determinantal basis to consist of all determinants which have a

maximum of nH1 holes in the RAS1 spinor set and a maximum of nE3 electrons in

RAS3. Appropriate division of the spinors over the three spaces and choice of the

parameters nH1 and nE3 make it possible to perform various types of CI-calculations. In

figure 3 the graphical representation of some important types of CI spaces is sketched.

The separation in RAS1, RAS2 and RAS3 of the spinor space is indicated by enlarging

the vertices which lie at the division.
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Figure 3. Graphical representation of CI spaces.
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a) b) c)

d) e) f)

a) Complete Open Shell CI (COSCI).

This method is used as a first step in the description of transition metal d-d like and rare

earth f-f like spectra. In this case the active space consists of the open shell spinors in

RAS2 only. Formally one may also take non-empty RAS1 and RAS3 spaces and put

nH1 = nE3 = 0, as is shown in the figure.

b) Charge Transfer CI (CTCI).

Second step in the description of the d-d like or f-f like spectra. The COSCI space is

extended by allowing charge transfer excitations from filled ligand orbitals into the open

d or f shell.
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c) First Order CI (FOCI).

The CTCI space is extended by allowing single excitations from the active occupied

orbital set (RAS1 and RAS2) into the unoccupied (RAS3) set. This allows orbital

relaxation of the charge transfer states which were mixed in the LFCI.

d) Single Reference Singles and Doubles CI (SRSDCI).

This type of CI is valuable if a single determinant already gives a good description of

the wave functions. Dynamic correlation effects are studied by allowing single and

double excitations out of this single determinant.

e) Multi Reference Single and Doubles CI (MRSDCI).

This method is also used to study dynamic correlation effects but allows for a more

general reference wave function.

f) CASCI or Full CI (FCI).

The CASCI limit can be reached in various ways in the RASCI formalism, an obvious

way is to put all spinors in RAS2, another possibility is to set both nH1 = mR1 and

nE3 = mR3. If the active space consists of all spinors, then the CASCI is equal to a

Full CI calculation.

The relativistic CI program DIRRCI that is designed to calculate wave functions within

such CI spaces is described in chapter 3. Spaces of the types a-c were used in the

calculations that are described in chapter 6, while the calculations of chapter 5 were

done in a space of the form e.

2.7. Use of abelian point group symmetry.

Applications of relativistic theory usually lie in the realm of 5d transition metals and rare

earth complexes. Description of the compounds is often done in a cluster model in

which a small number of atoms is taken out of the bulk. These clusters are frequently

highly symmetric, a symmetry that one can use to label the states of interest and

facilitate the computational effort involved in calculations.

If the system under study is invariant under the symmetry operations of a double group

D1, then the eigenvectors of the Dirac-Fock equation will transform as the irreducible

representations Γλ
1
 of this double group. Since the Dirac-Fock equation describes spin

1/2 particles the spinors will span the "extra" representations of the double group. The

many-electron wave functions span also the extra representations if the number of

electrons is odd and span the "normal" representations if the number of electrons is

even.

If the double group is abelian then all its representations are one-dimensional and the

labelling ψε
Γλ

1

 of Dirac-Fock spinors with their eigenvalue and representation is unique.

In this case the symmetry character of a determinantal wave function is also easily and
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uniquely determined by taking the direct product of all the representations of the

constituent one-electron functions.

In general the Dirac double group is, however, non-abelian and has multi-dimensional

representations. Now the labelling of one-electron functions is no longer unique and

degenerate spinor sets, spanning equivalent representations, can be arbitrarily mixed.

Another consequence is that the direct product representation that is spanned by

determinantal wave functions formed from these spinors will be reducible. This

reduction can in principle be done by forming the appropriate linear combinations of

determinants but leads to much more complicated expressions for the CI equations.

An elegant way that provides an additional label for the one-electron spinors and allows

one to keep the simplicity of the determinantal expansion basis is to make use of a

group chain. A group chain is defined as a number of groups D1, D2, .., Dn where

each group Dk+1 is a subgroup of the group Dk. We can now choose our one-electron

spinors such that they transform according to the representations of all subgroups in a

chain, thus making the labelling ψε
Γλ

1
,Γµ

2
, . . ,Γν

n

 of the spinor unique. In such a chain the

last group will be abelian and consequently the determinants will also transform as

irreps of this group. This makes it possible to solve the Dirac-Fock equations using the

full symmetry of the problem and the CI equations using only the abelian symmetry

operations without having to transform the spinor basis.

The use of abelian symmetry is easily incorporated in the graphical representation of the

CI-space. The vertices of the graphs are now split to indicate the symmetry character of

the paths (determinants) that pass through it. In figure 4 an example is given for the

abelian group C3*,  the multiplication table of which is given in table 1.

Table 1. Multiplication table of C3*. The dotted lines represent the separation between

the ordinary ( 1, 2, 3) and the "extra" ( 4, 5, 6) representations of this group.

C3* Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ2 Γ2 Γ3 Γ2 Γ5 Γ6 Γ4

Γ3 Γ3 Γ1 Γ2 Γ6 Γ4 Γ5

Γ4 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3

Γ5 Γ5 Γ6 Γ4 Γ2 Γ3 Γ1

Γ6 Γ6 Γ4 Γ5 Γ3 Γ1 Γ2
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Figure 4. Symmetry adapted graphical representation of a (6 spinor, 3 electron) space.

Number and kind of the six spinor representations are arbitrarily chosen.
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We can use this symmetry adapted graph to define a consecutive labelling of

determinants within the same representation. The vertex weights are defined as before

as the number of paths that lead from the top of the graph to this vertex. The recursive

formula 16 is modified to

 W(m1, n1, Γi) = W(m1-1, n1-1, Γj) + W(m1-1, n1, Γi) (18)

with Γi = Γj ⊗ Γ(m1). We now redefine the arc weights in the following way

- All vertical arcs (connecting vertices with the same number of electrons) have 

zero weight.

- The weight Y(m1, n1, Γi) of the arc which connects the vertices 

(m1-1, n1-1, Γj) and (m1, n1,  Γi) is equal to W(m1-1, n1,  Γi).

-  If vertex (m1-1, n1,  Γi) lies outside the graph its weight and the weight of 

Y(m1, n1,  Γi) is zero.
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One can now easily verify that the determinant |246| that was given index

15 = (1+3+10)+1 in the diagram of figure 1, is now listed as the 8th determinant of

representation Γ4. The sizes of the subspaces are of course easily obtained as the

weights of the bottom vertices. In this example we find 8 determinants in representation

Γ4 and 6 determinants in both Γ5 and Γ6.

The symmetry adapted graphical representation of the CI-space is used in the direct CI

program DIRRCI that will be treated in the next chapter. In the appendix more details

are given about the evaluation of CI matrix elements with the aid of graphical methods.

2.8. Kramers' symmetry

An operator that is not contained in the Dirac double point groups, but does commute

with the Dirac hamiltonian, is the Kramers'15  or Time Reversal operator K4

K4 = -i 
σy 02
02 σy

 K (19)

in which K is the complex conjugation operator. It can be shown that this antiunitary

operator commutes with the one-electron Dirac hamiltonian (formula 7). Since the

Coulomb part of the two-electron operator is diagonal and real it is easy to see that the

N-electron generalisation of the operator

 K4
(N)

 = K4
i∏

i = 1

N

 (20)

will commute with gij
Coulomb. To demonstrate that the magnetic, Gaunt interaction, part

of the two-electron operator (9), also commutes with K4 we will give the derivation for

a system with two electrons :

K4
(2)

 = K4
1
 K4

2
(21)

K4
(2)

, g12
Gaunt  = 

K4
1
 α1 . K4

2
 α2  -  α1 K4

1
 . α2 K4

2
  

r12
(22)

since K4
i
 anticommutes with αi:

K4
i
, αi + = 0 (23)

one can interchange both K4
1
 and α1 and K4

2
 and α2 which proves the proposition
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 K4
(2)

, g12
Gaunt  = 

   - α1 K4
1

 . - α2 K4
2

  -  α1 K4
1
 . α2 K4

2
  

r12
  = 0 (24)

The time-reversal symmetry is, contrary to the point-group symmetry which depends

on the nuclear framework of the system under study, always present in calculations that

use the Dirac-Coulomb-(Gaunt) hamiltonian. It is therefore tempting to adapt the

formalism such that it fully exploits this symmetry. Two points of thought before

building a method which is firmly rooted in this symmetry are in place here. First, if

one wants to calculate properties of molecules in external magnetic fields one needs to

include a magnetic interaction operator that is not invariant under the time-reversal

operator. Secondly, if one fully exploits the point group symmetry in high symmetry

point groups like Oh, the relations between one-electron spinors that are invoked by the

time-reversal operator are already contained in the relations given by the point group

symmetry operators. However, full exploitation of point group symmetry is hard to

combine with computational efficiency. In many cases one is furthermore not interested

in the influence of a magnetic field on the form of the molecular spinors. In that case

one may evaluate the magnetic field matrix elements by perturbation theory instead of

calculating them variationally.

The inclusion of the Kramers' symmetry in a graphical formalism like it was done with

the abelian point group symmetry is non-trivial. A problem is the labelling of the

spinors by their behaviour under the Kramers' operator. It is always possible to define

two subsets of spinors {ψ} and {ψ}, for which each spinor ψi is related to ψi by

ψi = K4ψi and ψi = - K4ψi. Since ψi and ψi have the same eigenvalue this separation

is, however, rather arbitrary since they may be rotated among each other and still be

eigenfunctions of the hamiltonian. If the system under consideration possesses point

group symmetry then this choice may be done such that the functions also transform

according to the representations of this double group16 . This procedure has no

advantages relative to a procedure in which one uses only point group symmetry,

however.

Nevertheless the use of the Kramers' symmetry to reduce the expansion spaces in

relativistic calculations seems very promising and should be investigated further. In the

next chapter use of the relations between the spinors to reduce the number of non-zero

matrix-elements in SCF and CI type of calculations is discussed17 ,18 . A further step

may be the use of these relations to redefine the Eij operators of equation 16 in a way

that is analogous to the non-relativistic unitary group method. In this method one

integrates over the spin variables by using Eij
'  = Eij

αα + Eij
ββ to obtain a formalism in

which the integrals are defined over orbitals instead of spinorbitals. Similar

redefinitions like Eij
'  = Eij  + Eji may be very useful in the relativistic formalism. At
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present this matter has not yet been investigated in enough detail, however, to give a

definite opinion on the way to proceed.
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3. Relativistic Quantum Chemistry
The MOLFDIR program package

3.1. Introduction

A relativistic description of electrons in molecules that contain one or more heavy

atoms is essential for accurate calculations of the electronic structure of such

molecules. One of the best examples is the well known yellow absorption band of

gold which, when calculated by non-relativistic methods, is predicted to lay in the

ultraviolet. Relativistic calculations give the correct position in the visible part of the

spectrum. An extensive review of the consequences of relativity on chemical

properties is given by Pyykkö in 19881.

Most computational quantum chemical methods are based on the non-relativistic

Schrödinger equation and treat relativity, if at all, by introducing correction operators

in the hamiltonian. These correction operators may be derived from the Dirac-

Coulomb-(Breit) equation and the validity of these approaches can be tested by the

calculation of the solutions of the Dirac-Coulomb-(Breit) equation itself. We have

developed a set of computer codes called the "MOLFDIR package" that can perform

such calculations for molecules of general shape.

In this article the basic concepts of the underlying theory are summarised, followed

by a more extensive description of the method chosen to solve the Dirac-Coulomb

equation. The technical aspects of the method are discussed in the description of the

modules of the MOLFDIR package. The computer resources necessary for

calculations of this type are discussed in section 5 while we conclude by considering

the possibilities for further methodological and technical extensions and

improvements.
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3.2. Basic Theory

The many-electron equation that we use in our relativistic calculations is the Dirac-

Coulomb-(Gaunt) equation for N electrons

H Ψ = E Ψ (1)

H = hi∑
i

N

 + 1
2

 gij∑
i ≠ j

N

(2)

Where hi is the one-electron Dirac hamiltonian for electron i

h = 
- eφ.12 c σ ⋅ p

c σ ⋅ p (- eφ- 2mc2).12

(3)

The inner product .p is taken between the vector of the three Pauli spin matrices 

(σx, σy, σz) and the momentum operator p (px, py, pz). We will work in atomic units

in which m, the mass of the electron, e, the elementary charge and h- are 1. The speed

of light, c, is taken to be 137.036 in these units. In our notation we use 12 for the 2x2

unit matrix.

The scalar potential, φ, arises from the nuclear framework in which the electrons

move. The nuclei are considered to be fixed in space and may have either a finite or a

point charge distribution. Properties of this relativistic one-electron hamiltonian are

well known and can be found in standard textbooks2,3.

To define our many-electron hamiltonian (2) we need to specify the two-electron

operator g ij. The problem here is that a correct relativistic two-electron operator can

not be written down in closed form. From the theory of Quantum Electro Dynamics

(QED) one can however derive a series expansion of the complete interaction4 in

which the first term is the Coulomb interaction

gij
Coulomb = 1

rij
(4)

The next term is the Breit interaction5, represented in our program package by its

magnetic part, an operator that was first derived by Gaunt in 19296

gij
Gaunt = -  

αi.αj
rij

(5)

- 24 -



3. Relativistic Quantum Chemistry. The MOLFDIR program package

is the vector of the 4-component matrices that are formed from the Pauli matrices in

the following way

αx = 02 σx
σx 02

 αy = 02 σy
σy 02

αz = 02 σz
σz 02

(6)

With gij  = gij
Coulomb  + gij

Gaunt equations (1) and (2) define our basic physical starting

point and level of approximation to QED. The next sections will deal with the

methods that we have developed to find approximations to the many-electron energy

E and the wave function Ψ of equation (1).

3.3. Methodology

The exact wave functions for molecular many-electron problems cannot be obtained

in closed form. Approximation by means of direct integration of the equation would

be attractive but is in general not feasible due to the large dimensionality and lack of

symmetry of the problem.

The usual approach in quantum chemistry is to break down the molecular problem in

terms of the constituent atoms and build molecular wave functions from (anti-

symmetrised) products of atomic centred one-electron functions. We will apply this

method to the Dirac-Coulomb-(Gaunt) equation and start with a discussion of the

influence of the form of the nuclear potential on the choice of the one-electron basis

functions. In section 3.3.2 the one-electron basis functions are defined, while sections

3.3.3 and 3.3.4 describe in detail the methods employed to solve the many-electron

problem. This part is concluded by considering the use of symmetry to simplify the

computations.

3.3.1. Nuclear model

The basis functions are chosen to resemble the solutions of the one-electron

(hydrogen-like) atomic problem. These solutions are dependent on the nuclear

potential that is used. This presents a problem since the exact charge distribution of

nuclei is not known in analytical form, but at best as measured data sets.

If one is interested in core electron properties one has to consider the structure of the

nuclear charge distribution. Especially in the case of heavy atoms, in which the nuclei

are large and the inner spinors are strongly contracted, use of a nuclear model that

resembles the measured structure is desirable. In molecular calculations, however, the

primary interest is the correct description of chemical bonding and low-energy

(valence) electron spectroscopy. In this case the bonding region of the molecule has to

be calculated accurately. The structure of the wave function in that region does not
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depend strongly on the detailed structure of the nuclei, so we may choose a simple

and convenient nuclear model in the calculations.

In non-relativistic theory a commonly used nuclear model is that of a point-charge.

An advantage of this model is that it has the same form for all nuclei, independent of

their nuclear charge and mass. The radial solutions of the Schrödinger equation for

the point-charge potential can be exactly represented by Slater type functions (rne-λr).

This makes the Slater type functions a natural expansion set for atomic orbitals. In

molecular calculations direct use of Slater functions is in general not feasible because

they give rise to complicated integrals. In these calculations sets of Gaussian type

(rne-αr2) functions are used, because multi-centre integrals over this type of functions

are relatively easy to evaluate7.

In relativistic theory one can also find exact solutions of the Dirac equation for the

point-nucleus potential. The radial part of the 1s1/2 solution for this choice of nucleus

is given by equation (7).

R (r) = rγ -1e-λr ,    γ = 1 - Z
2

c2
(7)

Z is the charge of the nucleus. We see that the finite speed of light gives rise to radial

solutions with a non-integer power of r. The resulting weak singularity at the origin

for the 1s1/2 (and also the 2p1/2) solution is hard to describe with the conventional

Slater functions and even harder to describe with Gaussian functions. This means that

we need much larger sized basis sets to get the same convergence to the exact

solutions as in the non-relativistic case.

Use of the point-charge model is therefore, especially in relativistic calculations, not

recommendable, because the appearance of such a singularity is just an artefact of the

crude point-charge model. If a more physical, finite, model of the nucleus is used, the

singularity disappears and the form of R(r) at the origin becomes Gaussian-like8. The

choice of a finite nuclear model combined with the use of Gaussian type basis

functions is computationally favourable and physically more sound than the point-

nucleus model. A slight disadvantage is that there is no agreement in literature yet on

a standard finite nuclear model, so that different models and parametrisations are in

use. This makes it difficult to compare total electronic energies obtained with

different codes. With our code one may use the crude but unambiguous point-charge

model for test calculations in which comparison of results with other codes is

necessary. Our standard model is based on a Gaussian distribution function of the

nuclear charge. In this model9 φ is given by
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φ (r) = NK
ZK e- ξK (r - RK)2

(r - RK)∑
K = 1

# Nuclei

 dRK (8)

ξK = 3.88*10-9 MK
-2/3 NK = 

ξK

π

 3
2

(9)

ZK is the charge of nucleus K and MK is its mass. In this formula ξ is related to the

homogeneously charged sphere model by the formula σ = R/2, with R the radius of

the sphere and σ the standard deviation of the radial Gaussian distribution. The

formula10 R = 2.27*10-5 Mk1/3 is used to relate the radii and mass of the nuclei.

3.3.2. Basis set approach

In this section we will describe the basis sets that are used to expand the one-electron

spinors in. Since our one-electron hamiltonian (3) is defined in 4-spinor space we

have to use basis sets that consist of 4-component functions. We shall start with the

definition of two scalar (1-component) basis sets and then define our 4-component

basis sets using these scalar functions.

The first scalar basis set is formed by primitive cartesian Gaussian basis functions.

The primitive basis set is subdivided in a large (L) and small (S) component set, that

will be used to describe the upper and lower two components of the 4-spinors

respectively.

gu
L = Nu

L xκu
L
 yλu

L
zµu

L
 e

- αu
L r2

,  gv
S = Nv

S xκv
S
 yλv

S
zµv

S
 e

- αv
S r2

(10)

We now make a second (contracted) scalar basis set consisting of linear combinations

of functions with different exponential parameters. These functions will also be

denoted by g but bear different indices (p, q). In the contraction process we use the

general contraction scheme that was introduced by Raffenetti11.

gp
L = cup

L  ∑
u

gu
L ,  gq

S = cvq
S  ∑

v

gv
S (11)

The primitive functions guL and gvS may contribute to all gpL and gqS, provided that no

functions with different values of κ, λ or µ are combined. This scheme makes it

possible to use (parts of) atomic solutions as basis functions for molecular

calculations and allows significant reductions of the basis set size without loosing

much accuracy.
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From these real scalar functions a set of 4-component functions is constructed in the

following way

ϑp
Lα

 = 

gpL

0

0

0

 , ϑp
Lβ

 = 

0

gpL

0

0

 , ϑq
Sα

 = 

0

0

gqS

0

 , ϑq
Sβ

 = 

0

0

0

gqS

(12)

This basis set is used to expand the atomic or molecular spinors and defines a matrix

representation of the one-electron Dirac or pseudo one-electron Dirac-Fock hamilto-

nian. Since it does not utilise the (point group) symmetry that often is present in the

nuclear framework, an additional transformation of the basis to a double group sym-

metry adapted basis may be preferable. This is done by the following unitary trans-

formation

χl
L = dpl

Lαϑp
Lα + dpl

Lβϑp
Lβ∑

p

,  χs
S = dqs

Sαϑq
Sα + dqs

Sβϑq
Sβ∑

q

(13)

Double group characters can be complex, hence we define the transformation

coefficients, dpl
Lα and dqs

Sα, as complex numbers. Note that with this transformation the

separation of spin and space coordinates disappears by the combination of functions

of different spin.

The functions χ may also be expressed directly in terms of the contracted scalar

functions in the following way

χl
L = 

χl
Lα

χ l
Lβ

0

0

and     χs
S = 

0

0

χs
Sα

χs
Sβ

(14)

χl
Lα  = gpLdpl

Lα∑
p

,  χl
Lβ = gpLdpl

Lβ∑
p

,  χs
Sα = gqSdqs

Sα∑
q

  and  χs
Sβ = gqSdqs

Sβ∑
q

(15)

The different basis sets are summarised in table 1.
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Table 1 : Basis sets used in the MOLFDIR program package.

Symbol Labels # of comp. Description Use

g L, u; S, v 1 component Primitive cartesian

Gaussians.

Low level integral

evaluation routines.

g L, p; S, q 1 component General contracted

cartesian Gaussians.

Two electron integral

evaluation and storage.

ϑ L, p, σ;

S, q, σ
4 component Non-symmetry adapted

basis.

Building of the Fock-

matrix. Storage of SCF

vectors.

χ L, l; S, s 4 component Symmetry adapted

basis.

Storage of one-electron

matrix elements. Storage

of density matrices.

3.3.2.1. Kinetic and Atomic Balance

Since all basis sets contain a large component (L) and a small component (S) set it is

possible to establish the relation between the large and small component parts of the

4-component spinors at Dirac-Fock level. This variational freedom will give a better

description of the electron and positron space than would be obtained if this relation

was fixed on forehand, because one now considers the effect of both the nuclear

potential and of the average potential of the electrons on the separation of the two

spaces. The positron solutions that explicitly occur are identified easily by their

eigenvalues below -2mc2 and are kept unoccupied. The remaining electron solutions

are used to set up the many-electron wave function. Before discussing the

optimisation of these electron spinors with the Dirac-Fock method in more detail, we

need to consider some restrictions that must be applied with regard to the definition of

the large and small component basis.

If we look at a one-electron equation with a hamiltonian as given in equation (3) we

see that we can express the small component of the solution as a function of its large

component

- eφ.12 c σ⋅ p

c σ⋅ p (- eφ- 2mc2).12

 
ψL

ψS
 = ε  

ψL

ψS
(16)

ψS = -1
eφ + ε + 2mc2

 c σ ⋅ p ψL (17)
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In the case of a one-electron atom both φ and ε are known exactly for a given solution
ψL
ψS

 , hence the operator on the right hand side of (17) is known. In many-electron

Dirac-Fock calculations the form of the average electron potential and the value of ε
are not known on forehand, so an approximated operator has to be used to find an

initial ψS for a given ψL. The simplest approximation, which neglects both φ and ε in

(17) because these are assumed to be small relative to 2mc2, is the kinetic balance12

relation

ψS = - 1
2mc

 σ ⋅ p ψL (18)

This relation becomes exact only in the non-relativistic limit. If a basis set is chosen

in which this relation between the large and small component part of the spinors

cannot be fulfilled, convergence to the non-relativistic limit upon enlarging the value

of c is not possible. Such lack of balance between the large and small component

bases manifests itself by giving too small values for the kinetic energy in this limit.

Basis sets that can fulfil relation (18) are hence called kinetically balanced.

To see how such basis sets can be constructed we need to consider the action of the

operator on the right-hand side of (18) on the large component functions. It's effect on

the spatial part of the function is determined by the differential operators ∂ /∂x, ∂ /∂y

and ∂ /∂z in .p. The action of ∂ /∂x on a primitive scalar Gaussian function is

∂

∂x
 xλ e

- α r2

 = λx λ - 1  - 2αx λ + 1  e
- α r2

 (19)

We see that a linear combination of two functions with the same value of α, but with

different values of λ arises. To fulfil the kinetic balance condition, these functions

have to be contained in the small component basis {gvS}.

The connection of a large component function to a small component function with the

same exponential parameter, but with its l-value shifted up or down by one, is typical

for the kinetic balance operator and is retained if the relations are further worked out

for the 4-component functions. In our case we construct a kinetically balanced basis

by including all scalar primitive functions that arise from the operation of ∂ /∂x, ∂ /∂y

or ∂ /∂z on all guL in the basis set {gvS}.

For primitive basis sets, this concept of kinetic balance is widely accepted as a

prerequisite for the choice of the small component basis functions. In contracted basis

sets the situation is less clear-cut. In particular the determination of contraction

coefficients for the small component basis functions gpS has been a matter of
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discussion13,14 in recent years. Straightforward application of the kinetic balance

operator in highly contracted basis sets gives erroneous results for contracted

functions that describe the core region of a heavy atom. In this region φ is not small

compared to 2mc2 and (18) becomes a poor approximation to the exact relation. In

this case an operator that resembles more closely the exact operator has to be used.

These considerations lead to the development of the atomic balance procedure15.

In the atomic balance procedure one first performs calculations on the constituent

atoms (or ions) of the molecule (cluster) using kinetically balanced, uncontracted,

basis sets (  gpL  =  guL ,  gqS  =  gvS ). New large component bases  g' p
L  and new

small component bases  g'qS  are then formed by contracting the primitive basis

functions with the spinor coefficients from these calculations. A good description of

relation (17) will be obtained since the atomic and molecular potential are much alike

in the core region while the differences that occur in the valence region will be small

compared to 2mc2.

With this technique highly contracted basis sets can be made and used in much the

same way as in non-relativistic calculations. An important difference, that makes the

contraction less favourable compared to the non-relativistic case, is caused by the

spin-orbit splitting. The difference in radial character of the l - 1/2 and l + 1/2 spinors

makes it important to use a contraction scheme that treats both on equal footing. This

in principle doubles the number of contracted Gaussian functions relative to a

comparable non-relativistic contraction scheme.

3.3.3. Closed and Open Shell Dirac-Fock

In this section the Dirac-Fock SCF scheme is derived that is used to tackle the many-

electron problem. A closed shell molecular Dirac-Fock formalism in which 4-

component atomic spinors were used as basis functions was first proposed by Malli in

197516. With the improvement of computer architectures in the eighties it became

feasible to use more flexible basis sets. Codes that use separate large and small

component basis sets, coupled by kinetic or atomic balance, are now in development

at several places17,18,19,20,21. We have implemented a scheme, analogous to the non-

relativistic Hartree-Fock-Roothaan method, that can handle arbitrary open and closed

shell molecules.

In order to describe open shell systems in an average field formalism Roothaan in

196022 derived the open shell Hartree-Fock equations. The relativistic analogue of his

energy expression becomes for an average of configurations23

E = hk∑
k

C

 + 1
2

Qkl∑
kl

C

 + f hm∑
m

O

 + 1
2

af Qmn∑
mn

O

 + Qkm∑
k,m

C,O

(20)
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In this formula k and l label closed shell spinors which have occupation one, while m

and n label open shell spinors which have a fractional occupation. Qij  ≡  Jij  - Kij  in

which Jij and Kij are the Coulomb and exchange integrals. For the average of

configuration energy the coupling constant, a, and the fractional occupation number,

f, are given as a function of the number of open shell spinors, m, and the number of

open shell electrons, n

f = n
m (21)

a = 
m (n - 1)
n ( m - 1)

(22)

Optimising this average of configuration energy will give us a set of spinors which

can be used to describe all open shell states arising from a given configuration. The

Fock equations are derived in the usual way by putting

∂E

∂ψi

 = 0,       δ <ψi | ψj> = 0,            ∀ i, j (23)

i and j label the occupied positive energy spinors. Note that the stationary E will only

be a local minimum since there will be lower energies possible by occupying negative

energy spinors. Such solutions are not particle conserving and will not be considered

in our approach.

In the following lines we present the equations which are obtained by expanding the

Fock equations in the non-symmetry adapted basis set {ϑ}. In formulas (26-30) the

labels X and σ that explicitly refer to the large/small and spin character of the basis

function will be omitted for clarity. A defined matrix element Apq represents the

block of elements Apq
XYστ (X,Y ∈ {L, S}; σ, τ ∈ {α, β} ).

α = 1-a
1-f

(24)

ψi = ϑp
Xσ

bpi
Xσ∑

p, X, σ
(25)

Spq =  p | q (26)

- 32 -



3. Relativistic Quantum Chemistry. The MOLFDIR program package

Dpq
C  = bqk

* bpk∑
k

C

Dpq
O  = f bqm

* bpm∑
m

O

(27)

Qpq
C  = (pq||rs)Dsr

C∑
rs

Qpq
O  = (pq||rs)Dsr

O∑
rs

(28)

Lpq
C  = SprDrs

CQsq
O  + Qpr

ODrs
CSsq∑

rs
Lpq

O  = SprDrs
OQsq

O  + Qpr
O Drs

OSsq∑
rs

 (29)

FC = h + QC + QO + αLO FO = h + QC + aQO + αLC (30)

For the closed shell orbitals the Fock equation is

FC|k〉 = εk|k〉 (31)

and for the open shell orbitals we get the equation

FO|m〉 = εm|m〉 (32)

Equations (31) and (32) are solved iteratively. The coupling operators LC and LO take

care of the orthogonality between the closed shell and open shell solutions. In this

formalism Koopman's theorem is valid and the open and closed shell spinor energies

εi can be interpreted as estimates of ionisation energies.

We get the following expression for the total energy

E = Tr HDDC  + 1
2

Tr QCDC  +

Tr HDDO  + 1
2

aTr QODO  +

Tr QODC (33)

Since the separation between positive and negative energy spinors is not established

until the Fock equations are solved, one might expect that the search for this local

minimum with an iterative Self Consistent Field (SCF) procedure could cause

convergence problems. In practise the energy eigenvalues of the two types of

solutions are so far apart that their mixing is weak and does not critically depend on

the initial density. Convergence of the SCF process is usually smooth with the energy

expectation value approaching the stationary value from above. After convergence of

the SCF process the energy of the configurational average is known together with a

set of Dirac-Fock spinors. To get the energy of the individual many-electron states

that are present in the average we use the Complete Open Shell Configuration
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Interaction (COSCI)24 method. In this method we construct the CI matrix equations in

the basis of all determinants which can be formed by distributing the n open shell

electrons over the m open shell spinors. The basis consists of m
n

 determinants which

gives a matrix that is usually small enough to fit in computer central memory and can

be diagonalised completely. The resulting wave functions can be used as a starting

point for Configuration Interaction methods.

3.3.4. Relativistic Multi Reference Configuration Interaction

The Dirac-Fock-COSCI approach gives intermediately coupled wave functions that

include some correlation between the open shell electrons. In many applications,

however, correlation between the open and closed shell electrons is important and

also a more extensive description of the correlation between the open shell electrons

is desirable. We have developed a relativistic variant of the Restricted Active Space

Configuration Interaction (RASCI)25 method which can be used to improve the wave

functions and energy differences found in the COSCI step.

To describe the method it is convenient to write the Dirac-Coulomb-(Gaunt)

hamiltonian in second quantised form. Using the generators of the unitary group Eij
(Eij = ai†aj) the hamiltonian can be written as

H =  i  h  j  Eij∑
i,j

 + ij  g  kl  Eij Ekl - Eil δjk∑
i,j,k,l

(34)

In this equation molecular spinors are labelled by i and j. The summation is restricted

to the electron solutions, we do not consider the process of (virtual) positron-electron

pair creation.

We expand the many-electron wave functions in a basis of determinants {ΦI}.

ΨR ≅ ΦI CIR∑
I

N
(35)

ΦI (r1, r2,...,rn) = (n!)- 1/2det  ψI1(r1) ψI2(r2) ...ψIn(rn) (36)

The result is a matrix representation of the hamiltonian that can be expressed as a sum

of 1- and 2-electron integrals multiplied by coupling constants γij
IJ and Γijkl

IJ

respectively.

HIJ = hij  γij
IJ∑

i,j

 +  ij | kl   Γijkl
IJ∑

i,j,k,l

(37)
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with hij = < i | h | j >, (ij | kl) = (ij | g |kl ),  γij
IJ =   I  Eij  J   and  Γijkl

IJ
 =  I  Eij  Ekl   J .

Since the size of the matrix will in general be in too large to be able to store all matrix

elements, we use the direct diagonalisation technique of Davidson26 to find the

desired eigensolutions ΨR. In this iterative method a small subspace is constructed

that spans the space of the desired eigensolutions. As zeroth order approximation the

subspace is spanned by M (usually of the order 1-10) trial functions TP

TP = ΦI DIP∑
I

N
P = 1, M (38)

This gives an MxM matrix representation HPQ
0  of the hamiltonian.

HPQ
0  = TP | H | TQ  =  DIP

*  DJQ HIJ∑
I, J

N
(39)

The eigenvectors, B, of this small matrix give the zeroth order wave functions ΨR
0

 in

terms of the expansion functions TP.

ΨR
0  = TP BPR

0∑
P

M
 = ΦI DIPBPR

0∑
I

N
∑
P

M
 = ΦI CIR

0∑
I

N
(40)

This space is then (repeatedly) extended with M new expansion functions to reduce

the error in the wave functions and eigenvalues. Given the nth order energy ER
n  and

wave functions ΨR
n

ΨR
n  = Φ I CIR

n∑
I

N
 = ΦI DIP BPR

n∑
I

N
∑
P

(n+1)M

(41)

CIR
n  =  DIP BPR

n∑
P

(n+1)M

 (42)

the coefficients, F, for the (n+1)th order corrections can be calculated as

FIR = 
IP∑

P

(n+1)M
 B PR

n  - C IR
n  ER

n

HII - ER
n

(43)
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 with IP = HIJ D JP∑
J

N
 (44)

The M functions defined by F are normalised and form the ((n+1)M+R)th expansion

functions. In this procedure the critical step is the evaluation of IP (equation 44). The

evaluation is done directly from the files of 1- and 2-electron integrals. This direct CI

approach resembles the methods developed by Knowles and Handy27 and by Jensen

et al28 but is more difficult to optimise. The main problem is that spin integration of

the generators E ij is not possible due to the implicit spin-orbit coupling present in the

one-electron spinors. We will sketch our algorithm after a short description of the

RAS choice of the determinantal space.

In the Restricted Active Space method the active spinor space is divided into 3

groups. The first group, RAS1, contains spinors that are occupied in the reference

space. The second group, RAS2, contains the spinors that are variably occupied in the

reference space. The spinors that were unoccupied in the reference space form RAS3.

The CI space is now defined by specifying a maximum excitation level nH1 from

RAS1 and a maximum excitation level nE3 to RAS3. The determinants that have nH1,

or less, holes in RAS1 and nE3, or less, electrons in RAS3 form the CI space. This

definition allows most of the conventional types of CI to be done as a special case.

To evaluate IP we use equation (37) to arrive at an expression in terms of the

integrals and coupling coefficients :

IP =  hij  γij
IJ∑

i,j

 + ij | kl   Γijkl
IJ  - γil

IJδjk∑
i,j,k,l

 ∑
J

N
 DJP (45)

The two-electron coupling coefficients Γijkl
IJ

 can be replaced by a product of one-

electron coupling coefficients γij
IJ if we substitute the resolution of the identity.

IP =  hij  γij
IJ∑

i,j

 + ij | kl  γij
IK γkl

KJ - γil
IJδjk∑

K

N

∑
i,j,k,l

 ∑
J

N
 DJP (46)

The summation over K, which on first sight would extend over all single excitations

from the CI-space, can be restricted to a summation over the N determinants within

the CI space. This restriction is a special feature of the RAS type of determinantal

spaces. The procedure was given by Olsen and Roos23 for real integrals (ij|kl) but

works for complex integrals as well. It uses the permutation symmetry
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( ij | kl ) = ( kl | ij ) to exclude all integrals which are multiplied by coupling

coefficients that couple to determinants that are not present in the CI space itself.

The final formula which is to be calculated is

IP = gij  γij
IJ∑

ij

 D JP∑
J

N

 + 
ij | kl

1 + δij,kl

 ∑
kl < ij 

γij
IK γkl

KJ ∑
ij

DJP∑
J,K

N

 (47)

i ≥ j : gij  = hij   + 
(ii | ij)

1 + δij

  - (ik | kj)∑
k < i

i < j : gij  = hij  - (ik | kj) ∑
k < i

3.3.5. Symmetry

Relativistic effects are most important in 5d transition metal complexes and actinide

complexes. Many of these systems possess high symmetry. An efficient use of these

symmetries can be helpful to keep the calculations feasible while point group

representations may be used to label the different states and to clarify the

interpretation. The MOLFDIR package is capable of handling all double groups that

are subgroups of the Oh double group.

The full point group symmetry is used up to the Dirac-Fock level. At the relativistic

CI level the highest abelian subgroup of the point group under consideration is used.

In order to get an easy correspondence between the two point groups our symmetry

adapted functions χl
Xγ of equation (13) are constructed in such a way that they

transform according to the irreducible representations of both groups.

In the calculation of the necessary one-electron integrals over χl
Xγ only the integrals

that are non-zero by symmetry need to be evaluated and stored.

The two-electron integrals are not calculated in the symmetry adapted 4-component

basis but in the basis formed by the scalar functions gpX . The two-electron part of the

Fock-matrix is constructed in the non-symmetry adapted basis {ϑ} and later

transformed to the symmetry adapted basis {χ} and added to the one-electron part.

The reason for the use of such a two-step procedure lies in the sizes of the different

basis sets, that were defined in equations 10-13. Since the same set of scalar cartesian

Gaussian functions {gi
X} is used for both {ϑi

Xα
} and {ϑi

Xβ
}, the size of the 4-

component basis {ϑ} is twice the size of the scalar basis. The basis {χ} has

essentially the same size as {ϑ} but is generally complex. Calculating and storing the

integrals in the scalar basis thus gives a factor of 25 reduction in both disk storage and

I/O processing, relative to the storage in the 4-component symmetry adapted basis.

The treatment of point group symmetry in the scalar basis is done by means of a 4-
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component generalisation29 of the formalism of Dacre30 and Elder31. In this

formalism a "skeleton" Fock-matrix is formed from a symmetry unique list of two-

electron integrals. The contributions of the missing integrals are included by

averaging over degenerate representations of the Fock-matrix.

The CI calculations are done in the molecular spinor basis {ψ}. This set is, like {χ},

by construction adapted to both the double group and the highest abelian subgroup.

This blocks the CI matrix of the COSCI step and reduces the lengths of the CI vectors

in the direct CI step. It also reduces the number of two-electron molecular spinor

integrals that have to be handled. These integrals over the molecular 4-spinors are

formed by a 4-index transformation of the symmetry unique list of scalar integrals.

The contributions of the missing integrals are included by a generalisation of the

method of Häser et al.32

Another symmetry which can be used is the Kramers' or Time-Reversal symmetry33.

This symmetry causes the twofold degeneracy of all spinor eigenvalues of systems in

the absence of external magnetic fields. The time-reversal operator, that commutes

with the hamiltonian, is defined as

K4  = -i 
σy 02
02 σy

 K (48)

in which K is the complex conjugation operator.

Operating with this operator on a given spinor | i > gives another spinor, | i > which

has the same eigenvalue. Substituting expression (25) gives the relation between

spinor |i> and spinor | i > in the basis {ϑ}

|i〉 = K4  |i〉 =  K4  ϑp
Xα

bpi
Xα + ϑp

Xβ
bpi

Xβ  = ϑp
Xβ

bpi
Xα *

 - ϑp
Xα

bpi
Xβ *

(49)

Since both | i > and | i > have the same (fractional) occupation, their contribution to

the density-matrix, as given by equation (27) is the same, but occurs at a different

place. This gives the following relations for the density, Fock and coupling matrices

Apq
XYαα  = Apq

XYββ *
,  Apq

XYαβ =  - Apq
XYβα *

(50)

The relations give a reduction of a factor of two in CPU time and memory

requirements in the construction and storage of the Fock and the other matrices.

Using relation (49), one can furthermore derive the following relations for the 4-

component molecular spinor integrals
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(ij | kl) = (ji | kl) = (ij | lk) = (ji | lk) (51)

(ij | kl) =  - (ji | kl) = - (ij | lk) = (ji | lk) (52)

(ij | kl) = - (ji | kl) = - (ij | lk) = (ji | lk) (53)

These relations are exploited in the 4-index transformation program but are at present

not used in the CI codes.

3.4. Structure of the MOLFDIR program package

The MOLFDIR program package consists of 11 separate FORTRAN programs that

communicate by means of data files. The input data may be grouped on one file

because NAMELIST type input is required for all modules. The input is usually

specific for a (group of) modules with the exception of the general option TWOC.

This option makes it possible to perform two-component (non-relativistic)

calculations in double group symmetry. The feature facilitates comparison with non-

relativistic results and may also be used to generate starting vectors for the Dirac-

Fock SCF step. Figure 1 gives a flow diagram that shows the organisation of the

package.

Figure 1. Flow diagram of the MOLFDIR program package.

MOLFDIR

RELONEL RELTWEL

MFDSCF

TMOONE ROTRANPROPAN

CALDENS

GOSCIP DIRRCI

GENBAS

Analysis
Basis generation

Relativistic CI

Dirac-Fock
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The programs are divided in four types. The first set of programs is necessary for the

evaluation of the Dirac-Fock equations. Given the results of these calculations, three

types of additional calculations are possible.

First one usually wants to analyse the spinors and the density. This can be done by

means of Mulliken population analysis (PROPAN) or by calculating the electron

density on a 3 or less dimensional grid (CALDENS).

If electron correlation is important or if an open shell calculation was done, additional

CI calculations are necessary to obtain accurate energies. This can be done by the

third set of programs. TMOONE and ROTRAN transform the integrals in the atomic

basis to the 4-component molecular spinor basis, while GOSCIP and DIRRCI do the

actual CI calculation. GOSCIP diagonalises a complete CI matrix and is to be used

for the small COSCI calculations. DIRRCI optimises a few roots and can be used for

larger RASCI calculations.

Finally GENBAS can be used to generate the general contracted (atomically

balanced) basis sets that are used in calculations on large molecular systems.

3.4.1. MOLFDIR

The main function of the MOLFDIR program is to generate the double group

symmetry adapted functions.

The cartesian Gaussian scalar functions gpX are grouped such that contaminant

combinations, like (x2 + y2 + z2)e-αr2, that arise from the d-functions, and similar

combinations that arise from f- and g-functions, may be removed in the

transformation to the basis {χ}. The groups are furthermore constructed such that all

functions which transform among each other under the symmetry operations of the

(single) point group are in the same group.

Symmetry functions that transform as the irreducible representations of the double

group are then constructed from these groups. The number of symmetry functions is

in principle equal to the number of cartesian Gaussian functions but may optionally

be decreased if contaminant combinations are to be excluded. MOLFDIR excludes by

default only the contaminant combinations that are formed in the large component

basis. The reason for keeping the small component contaminants is the occurrence of

the rλ+1 term in the kinetic balance relation (19) that can not be described accurately

without these small component 3s, 4p, etc. combinations. When looking at relation

(19) one can conclude that an l-type contaminant may instead be combined with an

(l-2)-type function to one small component function. Since the two-electron integrals

are calculated in the primitive scalar cartesian basis, this contraction has no

computational advantage in our method and we prefer to leave them uncontracted.

This procedure is usually referred to as unrestricted kinetic balance.
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The symmetry adapted functions χ are constructed by operating with a character

projection operator PΓ λ
1
,Γ µ

2
,Γ ν

3

 on the functions ϑ. The projection operator is the product

of (maximally) 3 projection operators for representations of the highest molecular

double group D1 and two of its subgroups D2 and D3 ( D3  ⊂ D2 ⊂  D1). The functions

χ generated in this way are orthogonal and span a basis for the irreducible

representations Γλ
1
, Γµ

2
 and Γν

3
 of the three double groups. A matrix representation of

these irrep's is now determined except for an arbitrary phase factor, in the case of

multidimensional irrep's. The phases of the functions χ are chosen such that the

matrix representations for multidimensional irreps that are spanned more than once by

the basis are equal.

 3.4.2. RELONEL
This module generates one-electron integrals over the symmetry adapted functions χ.
It calculates the overlap, potential energy, "σ.p" and kinetic energy integrals. The

kinetic energy integrals are only stored in non-relativistic (TWOC) calculations, in the

relativistic calculations they are used to calculate the difference

dl = [p2]ll - [σ ⋅ p]ls [S
-1]st [σ ⋅ p]tl ∑

s, t

(54)

dl measures the deviation from the kinetic balance relation for a large component

function l. If the small component basis functions (labelled by s,t) are formed by

kinetic balance on the large component these differences will vanish. When using

uncontracted, kinetically balanced, basis sets this relation gives a useful check on

input errors. When using atomically balanced basis sets dl will not be zero.

The potential energy matrix integrals are calculated using either a point charge

nuclear model or the Gaussian model defined in equations (8) and (9). The nuclear

masses, taken to be those of the most abundant isotopes, that were used in formula (9)

are tabulated in the MOLFDIR program.

3.4.3. RELTWEL

This program generates two-electron integrals over the scalar cartesian Gaussian

functions gpX. The integrals are calculated in four groups (LL|LL), (SS|LL), (SS|SS)

and (SL|SL) in which charge cloud notation is used and the label p is omitted. Other

groups of integrals do not contribute to the two-electron interaction or are related to

these groups by permutation symmetry. The first three groups appear in the

calculation of the Coulomb part of the two-electron operator, while the (SL|SL)

integrals contribute to the Gaunt operator. For each of these sets a separate threshold
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may be specified, which makes it possible to neglect small (SS|SS) integrals that

contribute little to the Fock-matrix.

The calculation is done over the groups of primitive functions that have the same

values of κ, λ and µ. This gives efficient vectorisation with vector lengths of the order

nu4, with nu being the number of primitives of the same type. The calculated integrals

over the primitive functions are transformed to integrals over the general contracted

functions by a limited 4-index transformation.

Symmetry is used by calculating only one representative of a group of integrals that

are related by a symmetry operation of the point group or by permutational symmetry.

Since only integrals which are above the specified threshold are stored, additional

storage of a label is necessary. Packing the four indices makes it possible to store the

label in an 8-byte word, just like the integrals that are calculated and stored in double

(8-byte) precision. The integrals are sorted into 14 groups, depending on the relations

between the 4 indices, before they are written. This sorting will allow efficient

processing in the SCF process.

3.4.4. MFDSCF

MFDSCF performs the SCF procedure necessary to solve the Dirac-Fock equations

(formulas 31and 32). To define the average of configuration energy expression, only

the fractional occupation number, f, of the open shell spinors has to be specified. A

technical restriction, resulting from the use of a single open-shell Fock-matrix, is that

all open shell spinors need to have the same fractional occupation number. This limits

the number of possible configurational averages that can be treated.

The initial electron density is usually that of a bare nucleus hamiltonian. Another

possibility is the use of non-relativistic two-component starting vectors that are

calculated using the two-component option of the program.

The work done in one SCF iteration can be divided into different steps :

1) Construction of the closed and open shell density matrices in the non-symmetry

adapted basis {ϑ}.
2) Building the two-electron part of the Fock-matrix in this basis.

The two-electron integrals come in batches that have been sorted on their relations

between the indices p, q, r and s. Of the 14 types, the integrals with all indices

different are most abundant. These integrals contribute at 18 places in the Fock-

matrix which makes it possible to form a short vector-loop for the addition.

3) Optional addition of the Gaunt interaction.

If the Gaunt interaction is to be included in the two-electron interaction, the batches

of (SL |SL) integrals are read and handled in much the same way as the Coulomb
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integrals. Differences are introduced by the off-diagonal character of the σ matrices

which for instance makes integrals of the type (Sα Lβ | gG | Sβ Lα) non-zero.
4) Transformation to the symmetry-adapted basis {χ}.

5) Completion of the skeleton Fock-matrix.

We here include contributions from the omitted two-electron integrals by averaging

the Fock-matrix over degenerate representations. The validity of this procedure has

been shown by Pitzer34 and is more efficient than the original procedure of applying

all symmetry operations to the matrix and adding the results.

6) Adding the one-electron matrix.

7) Transformation to the orthogonal basis and diagonalisation.

8) Selection of the closed and open shell vectors.

9) Construction of the new density-matrix in the symmetry adapted basis and

extrapolation of the density.

10) Check on convergence and other stopping criteria.

The most time consuming parts of this process are steps 2 and 3. The CPU time

involved is linear in the number of two-electron integrals that have to be processed.

This number is dominated by the (SS | SS) and (SL | SL) type of integrals. In the

discussion (section 6) some attention will be paid to attempts that may decrease this

number without loosing accuracy. A number of such approximate methods have

already been coded but more systematic research is necessary to give a sound

judgement of their validity.

The SCF process is slowly convergent due to the large size of the basis set and may

give oscillatory behaviour due to wrong ordering of closed and open shell spinors in

the initial stage of the process. To cope with these problems various convergence

accelerating and damping techniques have been implemented and tested. The best

procedure turned out to be the use of a fixed damping on the density-matrix followed

by Pulay's DIIS method35, with the error vector taken to be the commutator of the

Fock and density matrices. Other methods available are overlap selection with the

previous vectors, selection of open shell spinors by their population and a three- or

four-point extrapolation method on the density36. An implementation of the

quadratically convergent SCF method37 is in development.

3.4.5. CALDENS

CALDENS calculates the electron density on a grid that can be specified by the user.

These data can be used to visualise the electron density with the aid of the

visualisation package AVS38, or with similar packages. To analyse contributions of
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the individual spinors a partial density may be defined by considering contributions

from one, or a limited number of spinors only.

The program first transforms the MS vectors to the non-symmetry adapted basis {ϑ}

in which the total density function ∆ (x, y, z) is defined as

∆ = ∆L + ∆S (55)

 ∆X (x, y, z) =  Dpq
XXσσ, C + Dpq

XXσσ, O∑
p, q, σ

 ϑp
Xσ

(x, y, z) ϑq
Xσ

(x, y, z)   

Note that cross terms in X or σ do not contribute to the value of ∆, because of the

orthogonality of the ϑ's.

The program gives by default the value of ∆ , but can also be used to calculate the

values of ∆L or ∆S separately.

3.4.6. PROPAN

Another analysis is possible by splitting contributions to the molecular spinors by

their atomic contributions. PROPAN uses the well-known Mulliken39 scheme to do

this analysis. The following quantities are defined

Qpq
i  = 2 - δpq  dpi

Xσ *
dqi

Xσ spq
XX, σσ∑

X, σ
 (56)

with spq
XY, στ = gp

X(r) gq
Y(r) dr δXY δστ

The diagonal element of Q, Qpp
i , is the net population of basis function p in spinor |i>,

off-diagonal elements are called overlap populations. Since the molecular spinor

coefficients d are complex numbers, the off-diagonal elements may be complex as

well. The diagonal elements and the trace will be real, however. An additional

quantity Pp
i  is sometimes useful to distribute the charge found in the off-diagonal

elements. This gross population of the basis function p is defined as

Pp
i  = Qpp

i  + 1
2

Qpq
i∑

 q ≠ p

(57)
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The total electron charge can now be written as :

Q = fi Qpq
i∑

i, p, q

 = fi Qpp
i∑

i, p

 = fi Pp
i∑

i, p

(58)

with fi the fractional occupation of spinor |i>.

PROPAN calculates Pp
i  and Qpq

i  for a specified set of spinors.

3.4.7. TMOONE

This program generates effective one-electron integrals that represent the Coulomb

and exchange interaction of the valence electrons with the frozen cores and the

interaction with the nuclei. The integrals are obtained by constructing a density-

matrix Dpq
C , like the one given in equation (27), but with the sum over spinors being

restricted to the frozen core spinors. The desired effective one-electron matrix

elements are then obtained by transforming the closed shell Fock-matrix to the active

spinor space.

3.4.8. ROTRAN

This program generates two-electron integrals over the active molecular spinors. A

detailed description of the basic algorithm has been given by Visser40. The algorithm

has recently been improved by the use of time-reversal symmetry. This gave a storage

and CPU reduction with a factor of 2 in the half-transformed integrals. The relations

introduced for the half transformed integrals are given in formulas (59-62). Note that

the relations for the Gaunt and Coulomb interaction differ by a sign factor. This

difference disappears for the fully transformed integrals (relations 51-53).

(ij | gC | pq) = (ji | gC |  pq)  (59)

(ij | gG | pq) = -  (ji | gG |  pq) (60)

(ij | gC | pq) = -  (ji | gC |  pq) (61)

 (ij | gG | pq) = (ji | gG |  pq) (62)

A second difference with the algorithm as described by Visser is the breakdown of the

final step into two parts. In this step the contributions to the MO-integrals, that come

from omitted non symmetry unique integrals, were included by the transformation
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ij | kl  =  ab | cd  Γai
*  (R) Γbj (R) Γck

*  (R) Γdl (R)  ∑
abcd

∑
R

(63)

in which the sum over R is the sum over all operations in the point group. Häser et

al.20 developed a method to reduce the large memory requirements (2m4, m being the

number of active molecular spinors) that straightforward implementation of this

formula would ask. If we define A as the compound label (abcd) and I as the

compound label (ijkl) we can write the transformation (63) as

I  =  A  PAI  ∑
A

(64)

with

PAI = Γai
*  (R) Γbj (R) Γck

*  (R) Γdl (R)∑
R

(65)

Diagonalisation of P yields mostly zero eigenvalues and a small number of

eigenvalues g, with g being the dimension of the group

PAI = UAν λν∑
ν

 Uν I   , λν = 0, g (66)

The transformation is thus broken down in two steps :

ν  =  (A) UAν∑
A

(67)

I  =  (ν) λν Uν I∑
ν

(68)

in which at each stage only the small number of non-zero reduced matrix elements (ν)

has to reside in core. Use of this new algorithm makes transformations to a large

number of active spinors possible.

3.4.9. GOSCIP
Given a set of m active spinors {ψ} and a number of electrons n, GOSCIP generates

bit representations of the m
n  determinants that can be formed within this space. By

construction, as a product of symmetry adapted spinors, these determinants will

transform according to a representation of the highest abelian double group of the

problem. The appropriate representation of the determinant in this abelian double

group is easily obtained by table lookups. Using the bit representations the CI matrix
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elements in the non-zero blocks are calculated. The resulting blocked matrix is fed to

a standard complex diagonalisation routine that gives the complete set of eigenvalues

and eigenvectors. The eigenvectors are written to file and may be used as starting

vectors for direct CI calculations.

3.4.10. DIRRCI

This program performs the direct RASCI type of calculations that were described in

section 3.3.4. In one run a number of wave functions (nroots) that belong to the same

irreps of the (abelian) double group are calculated. The wave functions that are to be

optimised are usually the multi-determinantal wave functions that were obtained in a

preliminary COSCI calculation.

In the case of a closed shell or another reference wave function that can be written as

a single determinant, the COSCI step can be skipped. DIRRCI then takes the

determinants in the CI space that have the lowest expectation values as the reference

wave functions.

The program starts by producing a sorted two-electron MS integral file. For a given

(kl) all non-zero integrals (ij|kl) with (ij) ≥ (kl) are stored consecutively. Subsequently

the effective one-electron integrals are read and the gij matrix elements that are

defined in equation (47) are formed.

The next step is the generation of the one-electron coupling coefficients γij
IJ. Since the

many-electron basis is defined to consist of simple determinants these coupling

coefficients will be either -1, 0 or 1. Their number scales like Nm2, with N the

number of determinants and m the number of spinors. Although only non-zero

elements are calculated it is still impossible to store all elements in core memory. The

calculated elements are stored on a direct access file with for each (ij) combination a

list of addresses of pairs I and J, combined with the sign of the coupling coefficient.

In the calculation use of a graphical representation of the CI space41 has been very

useful. More details about this method can be found in chapter 2 and the appendix of

this thesis.

Since for each two-electron integral (ij|kl) this list has to be read back into memory,

the performance of the program is largely determined by the I/O overhead. An

alternative procedure, that reduces this overhead at the expense of extra CPU time, is

to regenerate the list of addresses whenever needed. Depending on the computer used

and the size of the CI-space, the user may choose the most efficient of both strategies.

In non-relativistic singles and doubles CI calculations the coupling coefficients are

often factorised into an internal and an external part42. Such a factorisation is also

possible in our case, if no more than two electrons are excited to the RAS3 space. The
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implementation of this factorisation made it possible to keep all γij
IJ, for which i or j

belong to RAS3, in core memory and reduced the I/O problems.

As a final step before the iterative diagonalisation process is started, the diagonal

matrix elements HII that are needed in the evaluation of equation (43) are generated.

In the iterative diagonalisation process all CI vectors D and are kept in memory.

The evaluation of formula (47) is done by the following algorithm

zero the array  Σ (N, nroots)

loop over (kl)

zero the array F (N, nroots)

read all integrals (ij|kl), ij) ≥ (kl)

read or generate all γkl
KJ

loop over iroot

loop over J

add Σ (K, iroot) = Σ (K, iroot) + γkl
KJ * D (J, iroot) * gij

calculate F (K, iroot) = γkl
KJ * D (J, iroot)

endloop over J

endloop over iroot

loop over (ij)

read or generate all γij
IK

loop over iroot

loop over K

add Σ (I, iroot) = Σ (I, iroot) + γij
IK * F (K, iroot) * (ij|kl)

endloop over K

endloop over iroot

endloop over (ij)

endloop over (kl)

In the loop over J, a loop over K is implied because only one γkl
KJ will be non-zero for

a given (kl) and J. The same holds for the loop over K, where a loop over I is implied.

The algorithm is vectorised in these inner loops (J, K) and may be parallelised in the

loops (iroot) over the roots.

After the calculation of the sigma vectors, new expansion vectors D are obtained

following the normal Davidson procedure. The calculation is converged if all residual

vectors R (R = HC - EC) have norms beneath the specified threshold. This stopping

criterium is the most rigorous, other criteria that may be specified are a convergence

threshold on the energy or a maximum number of iterations.
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The final wave functions that are given by the vectors C are written to file for further

analysis and restart purposes. The default analysis is to calculate the diagonal matrix

elements of the CI density-matrix

3.4.11. GENBAS
This program generates the contraction coefficients cupL  and cvqS , that were defined in

equation (11). It assumes that an atomic calculation was done in a given uncontracted

basis {ϑu
L
,  ϑv

S
} which yielded a set of molecular spinor coefficients bui

Lσ and bvi
Sσ. In

the atomic case these complex coefficients can be multiplied by a phase factor that

makes the large component part completely real and the small component part

completely imaginary. This means that they can be mapped on a set of real

coefficients c.

As an example we take a look at the generation of contraction coefficients for a large

component p basis function from the atomic 2p1/2 and 2p3/2 spinors. We number the

p1/2 as spinor  1 and the p3/2 as spinor 2. After multiplying with the appropriate phase

factor we get 4 different scalar functions

gI
L = bu1

Lα ∑
u

gu
L, gII

L = bu1
Lβ ∑

u

gu
L, 

gIII
L  = bu2

Lα ∑
u

gu
L, gIV

L  = bu2
Lβ ∑

u

gu
L (69)

Non-zero contributions in this sum will only come from functions of the type px, py

and pz. Since the relation between these three functions for a given spinor is fixed by

the spherical symmetry, we have to consider only the radial character : the relation

between functions of the same type, but with a different exponent α . We thus further

restrict the sum over u (u') to functions of one of these types (for instance only px

functions).

g'I
L = bu'1

Lα ∑
u'

gu'
L, g'II

L = bu'1
Lβ ∑

u'

gu'
L

g'III
L  = bu'2

Lα ∑
u'

gu'
L, g'IV

L  = bu'2
Lβ ∑

u'

gu'
L (70)

The resulting set of functions is representative for the radial character of the p1/2 and

the p3/2 spinor that was used. Since we use an average of configuration formalism in

which no spin-polarisation will occur, g' I
L ≡ g' II

L and g' III
L  ≡ g' IV

L . GENBAS normalises

the functions and then projects out the part of g' III
L

 that is orthogonal  to g' I
L. Inclusion

of this differential function in the basis is important if the spin-orbit splitting of the
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shell is large. An appropriate measure for this splitting is the norm of the differential

function. GENBAS enables the user to specify a threshold (default 1.E-5), above

which the differential function is included in the basis set.

If more than one p-shell is present in the atom the orthogonalisation procedure is

continued and functions that have a non-orthogonal part with a norm above the

threshold are added to the basis. To get flexibility in the valence region the procedure

is usually ended by orthonormalising and adding some diffuse primitive functions.

To generate functions for the small component essentially the same scheme is used.

The main difference here is that apart from these fuctions that arise form the atomic

calculation (the atomically balanced functions) an additional set of functions may be

defined by kinetic balance (equations 18 and 19) on the newly formed large

component basis. This set can also be orthogonalised to, and included in the basis if it

is significantly different from the set already obtained. The threshold for inclusion in

the small component basis is by default set to 1.E-7.

Following this procedure general contracted basis sets can be obtained that give

exactly the same atomic energies as the uncontracted bases and have sufficient

variational freedom to describe the changes that occur in the molecule. Due to the

doubling of contracted functions in the core, where the l±1/2 spinors differ most, the

reduction of the number of basis functions is, however, not as large as can be obtained

in non-relativistic calculations.

3.5. Timings for some sample calculations

The first (closed shell Dirac-Fock) part of the package was completed in 1985. The

open shell part including GOSCIP was finished in 1991, while the direct CI code

DIRRCI has become operable in 1992. During this period many of the older modules

were optimised and changed which makes it difficult to compare timings of the older

calculations with newer calculations. We will give two examples of recent

calculations to give an impression of the resources that are needed.

3.5.1. Methane

A small calculation, that we use for testing purposes, is a calculation on the carbon

atom and methane molecule. Results of these calculations and of other calculations on

the whole series XH4 (X=C, Si, Ge, Sn, Pb) have been published by Visser et al.43

The performance in these small computations is dominated by the SCF part. The disk

space necessary is almost solely determined by the number of (SS|SS) and (SL|SL)

integrals.
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Table 2. Timings C and CH4. Calculations performed on a Convex C240.

Carbon atom Methane

Module Diskspace CPU time Diskspace CPU time

MOLFDIR 0.1 Mb 2.1 s 0.3 Mb 3.7 s

RELONEL 0.2 Mb 2.9 s 0.7 Mb 17. s

RELTWEL 1.8 Mb 4.7 s 37. Mb 101. s

MFDSCF 2.6 Mb 67.0 s 39. Mb 443. s

TMOONE 2.6 Mb 3.5 s -- --

ROTRAN 2.6 Mb 3.8 s -- --

GOSCIP 7.0 Kb 0.3 s -- --

3.5.2. Platinumhydride

One of the recent large calculations that was done involved the PtH molecule

(chapter 5). This molecule serves as the simplest model for the bonding of hydrogen

on platinum surfaces.

The basis set employed for Pt is (22s18p14d11f | 18s22p18d14f11g), generally

contracted to [8s10p9d3f | 6s13p12d11f4g]. The Dirac-Fock calculations were

followed by CI-SD calculations. In the latter calculations 11 valence electrons were

correlated, using a RAS space of (10, 2, 70) with NH1 = NE3 = 2.

Table 3. Timings Pt and PtH. Calculations performed on a Cray Y-MP 464.

Platinum atom PtH molecule

Module Diskspace CPU time Diskspace CPU time

MOLFDIR 0.9 Mb 6.8 s 0.4 Mb 3.6 s

RELONEL 3.0 Mb 54. s 3.5 Mb 313. s

RELTWEL 2.2 Gb 0.4 h 1.8 Gb 3.5 h

MFDSCF* 2.3 Gb 3.2 h 1.9 Gb 0.4 h

TMOONE -- -- 1.9 Gb 280. s

ROTRAN -- -- 3.0 Gb 0.8 h

DIRRCI -- -- 0.6 Gb 0.4 h

GENBAS 5.1 Mb 23. s

* Different versions of MFDSCF were used in the Pt and PtH calculations.

When comparing the atomic and the molecular disk usage one finds that for the atom

one needs more space to run the SCF part than for the molecule. This is caused by the

general contraction that was applied in the molecular basis set, making the integral
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files shorter even though the symmetry that could be used is lowered (Oh -> C4v). The

large CPU time for the atomic SCF part was caused by the large number of iterations

that was necessary to converge. The reason for this was that at that time the DIIS

extrapolation procedure was not yet implemented. This procedure usually reduces the

number of iterations by a factor of 2 to 3 and has significantly speeded up the

molecular calculation.

3.6. Discussion and future developments

The program package presented here is applicable to various types of molecules and

has proven to give reliable results. It's development has not stopped yet however,

because further optimisations of the present modules are still possible to reduce the

rather formidable computational resources that are needed for large-scale calculations.

Also additional features and modules, like MCSCF or Coupled Cluster, may be

implemented to increase the level of theory available. We will discuss some of the

ongoing research and give an outlook on what developments are likely to come in the

near future.

3.6.1. Reduction of the number of scalar two-electron integrals

The time spent in one SCF-iteration and the time necessary for the 4-index

transformation scales almost linearly with the number of two-electron integrals that

are calculated in the scalar basis. The amount of diskspace that is to be used is also

solely dependent on this number.

The problem of the large two-electron integral files is of course familiar from

experiences with non-relativistic quantum chemical calculations. Some of the

remedies that have been developed in that field may be well suitable in our case and

additional techniques may be used that take the different importance of the four sets

(LL | LL), (SS | LL), (SS | SS) and (SL | SL) into account.

A technique that seems to work fairly well is to discard small-valued (SS | SS)

integrals. The justification for this procedure is given by the estimate of the

coefficients for bvi
Sσ that can be obtained from equation (18)

 bqi
Sσ ~ 1

2c
 bpi

Lσ (71)

This means that an (SS | SS) integral will give a contribution to the Fock-matrix that

is of the order 1
2c

4
 = 2E-10 times smaller as the contributions from the (LL | LL)

integrals. Relation (71) is, however, only applicable for free electrons with low

energies. In the inner shell 1s1/2 spinor in Pt the ratio between bui
Lσ and bvi

Sσ is about 3.3
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giving an (SS | SS) contribution that is only of the order 1.E-2 times smaller than the

(LL | LL) contribution. This makes it more difficult to leave out integrals.

Our experience is that a threshold of 1.E-6 on the (SS | SS) integrals, and a threshold

of 1.E-9 for the (SL | SL) and (SS | LL) type of integrals may be used without loss of

accuracy.

Another related technique is to calculate only a specific type of (SS | SS) integrals, for

example only those that involve small component core functions. This may however

lead to imbalances in the SS and SL part of the Fock-matrix that give rise to so-called

intruder states : positron states that have energies (far) above -2mc2. Dyall has shown

that these problems may be overcome by defining radially localised functions after

which valence integrals that involve the outer shells may be skipped44.

We are at present experimenting with a somewhat different scheme in which only

one-centre (SS | SS) integrals are calculated. Preliminary results indicate that this

practical scheme may work, but more research needs to be done.

All these schemes use the fact that the (SS | SS) contributions to the Fock-matrix will

be small and will not change much going from the atom to the molecule. This makes

the method suitable for the direct SCF scheme45 or a hybrid scheme of partly storing

and partly regenerating integrals46. The direct schemes recalculate the integrals

whenever they are needed (if the differences in the density-matrix are above a given

threshold) and thus reduce the disk and I/O requirements at the expense of CPU

effort. This scheme is attractive for the relativistic method for two reasons. The first is

that the differences for most SS density matrix elements between subsequent

iterations will not be large, so that recalculation of the (SS | SS) contribution and

integrals will be required only a few times. Another, but somewhat conflicting, reason

is that use of kinetic balance leads to shells of functions that differ by their values of

(κ, λ and µ), but share the same exponent. This allows very efficient generation of

batches of integrals47 which reduces the additional CPU requirements. The conflict

with the first reason is in the fact that some of the recalculated integrals will be

important while others don't give rise to important changes in the Fock-matrix. This

implies a fast generation of unnecessary integrals.

3.6.2. Contraction and the use of symmetry

A different approach that may also reduce the number of integrals and hence improve

the performance is to use strongly contracted basis sets. In our scheme contraction is

hampered by the fact that it must be specified in the scalar basis. If we would build

our functions χ (equation 13) directly from the primitive functions g (equation 10),

then we would be able to specify different contractions for different j-values. The
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orthogonalisation that was described in the GENBAS module is then unnecessary

since the 4-component functions χ will be orthogonal by their spin character.

The problem with this scheme is that the two-electron integrals should be calculated

either in the uncontracted scalar basis, or in the 4-component symmetry adapted basis.

Both basis sets contain more functions than the scalar contracted basis set. However,

if we limit ourselves to the SCF stage we find that of all integrals over {χ} only

integrals of the type (ΓiΓi | ΓjΓj) and (ΓiΓj |ΓiΓj) do contribute. This restriction to

integrals that contain only two irreps can be exploited in a supermatrix formalism22.

For highly symmetric molecules these supermatrices will be much smaller than the

complete two-electron integrals files, which combined with the more flexible

contraction possibilities probably give smaller files than can be obtained with the

present scheme.

A problem is that the non-SCF type of integrals are necessary in the CI calculations

and therefore also in the 4-index transformation. This problem may be overcome by

recalculating the integrals for this step, thus making the 4-index transformation

"direct".

We expect to have a working version of this supermatrix based scheme in the

beginning of 1994, after which experience must learn which scheme (scalar integrals

or 4-component symmetry integrals) is preferable.

3.7. Conclusions

We have presented a method and a FORTRAN program package that can be used for

reliable and accurate relativistic electron structure calculations for heavy atom

containing systems. The structure of the package is flexible so that optimisations and

additions can be made within the existing structure.

Given the research stage of relativistic quantum chemistry methods in general this

program is not yet to be considered a "black-box" tool. The present stage of

development does however allow the general use of the package provided that

sufficient computational resources are available. Interested quantum chemists can

thus use it as a benchmark code for methods that treat relativity in a more

approximate way.
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4. Kinetic balance in contracted basis sets for
relativistic calculations

4.1. Abstract

A demonstration of kinetic balance failure in heavily contracted basis sets is given.

Other possible methods of constructing small component basis sets for 4-component

relativistic calculations are discussed. The position of the additional negative energy

levels in extended balance calculations in some recent many-electron calculations is

examined.

4.2. Introduction

Relativistic calculations based on the Dirac equation or the effective one-electron Fock-

Dirac equation are often performed by means of basis set expansion. The most common

way to do this is to define two basis sets, one describing the upper two (large)

components of the wave function and one describing the lower two (small)

components. As is argued by many authors1-5 it is important for the small component

basis set to be related to the large component by means of the so-called "kinetic

balance" condition. This condition assures that the non-relativistic limit (which can be

obtained by letting the speed of light, c, grow to infinity) is correctly described even in

a finite basis.

However, if one attempts to do relativistic calculations one is not too much interested in

the convergence to the non-relativistic limit but rather in a correct description of the

solutions for the real finite value of c. In this case straight forward application of the

kinetic balance prescription may lead to erroneous results as we show here by

examining the 1s1/2 and 2p1/2 orbitals of a hydrogen like system.

We furthermore examine the behaviour of extended kinetic balance basis sets in a few

recent many-electron calculations in order to give some insight about the position of the

extra states introduced in the spectrum by the extension.
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4.3. Theory

The Dirac equation is given by

V(r ) c σ.p

c σ.p V(r ) − 2mc 2









ψL(r )

ψS(r )









= E
ψL(r )

ψS(r )







 (1)

If we have a spherical symmetric potential V(r) as is the case in atoms, the radial part of

the equation can be separated following Grant and Quiney2

ψL(r ) = 1
r P(r) χ κ,m (θ, ϕ) (2a)

ψS(r ) = i
r Q(r) χ −κ,m (θ, ϕ) (2b)

V(r) c − d
dr + κ

r( )
c d

dr + κ
r( ) V(r) − 2mc 2









P(r)

Q(r)









= E
P(r)

Q(r)









(3)

This equation can be used to express Q (r) as a function of P (r)

Q(r) = (E + 2mc 2 − V(r))
−1

c(
d
dr + κ

r )P(r) (4)

If we take the non-relativistic limit by letting the speed of light, c, approach infinity the

relation simplifies to

Q(r) = 1
2mc ( d

dr + κ
r )P(r) (5)

This gives the (restricted) kinetic balance condition. If P (r) is expanded in the basis set

{ϕL}, the expansion set {ϕS} is said to be kinetically balanced if it contains all

functions (d/dr + κ/r)ϕL. If this mapping is 1 to 1 the basis set is of the restricted

kinetic balance type. If the small component contains additional functions it is said to be

of extended kinetic balance type.
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4.4. One electron systems

 As an example of the failure of restricted kinetic balance calculations we take the

hydrogenlike system Sn49+.  We expand P(r) in a basis of nprim normalised

uncontracted gaussian functions and construct the basis for Q(r) by kinetic balance. In

this basis the Dirac matrix is diagonalised, yielding an energy ε and an approximation

of P(r) in terms of gaussian type functions

P(r) ≅ c i N i r l +1 e
−α

i
r 2

i

nprim

∑
(6)

We normalise this linear combination and use it as a minimal basis for P (r)

P'(r) = N P' c i N i r l +1 e
−α

i
r 2

i

nprim

∑
(7)

We now generate a minimal basis for Q(r) by operating with the kinetic balance

operator as was defined in (5) on the large component basis function P'(r)

1
N

Q'

Q'(r) = 1
2mc [ d

dr + κ
r ]P'(r) = 1

2mc c i N i [(1 + κ + 1)r l − 2 α ir
l +2]e

−α
i
r 2

i

nprim

∑

             (8)

Together the functions give a minimal (2x2) matrix representation of the Dirac equation:

V
LL

cΠ

cΠ V
SS − 2mc 2







c P'

c Q'









= ε '
c P'

c Q'









(9)

V
LL =

P'(r)Z e P'(r)
r dr

0

∞
∫

(9a)

V
SS =

Q'(r) Ze Q'(r)
r dr

0

∞
∫

(9b)

Π = Q'(r) (
d

dr + κ
r ) P'(r)dr

0

∞
∫

(9c)
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Another possible way of forming a contracted basis is to split Q' (r) in two functions in

the following way

Q"
1
(r) N

Q"
1

c
i
N

i
(1 κ 1)r l e

α
i
r

2

i

nprim

(10a)

Q"
2
(r) N

Q"
2

c
i
N

i
r l 2 α

i
e

α
i
r

2

i

nprim

(10b)

Now we have an extended kinetic balance (3x3) matrix representation of the Dirac

equation with an eigenvalue ε".

We have studied the relation between E, ε, ε' and ε" as a function of the number of

primitive basis functions.

4.4.1.  The 1s1 / 2  orbital
In this case κ = -1 and l = 0. Since the first term in (8) cancels for this value of  κ, Q1"

is zero and ε' = ε". Table 1 shows the convergence of ε and ε'  with respect to the exact

eigenvalue E.

It is clear that constructing a small component basis in this way leads to large errors if

the level of contraction increases. In this kind of extremely contracted basis sets it might

be informative to look at the individual matrix elements VLL, VSS and cΠ. Since the

exact solutions P (r) and Q (r) are known to be the same for the 1s1/2 orbital, VLL and

VSS should converge to the same value.

 From table 2  it can be seen that while VLL and cΠ are convergent, VSS is  diverging

as the number of basis functions increases.
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Table 1. The approximated energy eigenvalues for the 1s1/2 orbital with respect to the

exact value in the kinetic balance approximation as a function of the number of primitive

basis functions.

nprim. ε ε  - E ε' ε' - E

1 -1071.5184 223.1077 -1071.5184 223.1077

2 -1244.1555 50.4706 -1245.2324 49.3937

3 -1281.3753 13.2508 -1284.3684 10.2577

4 -1290.6821 3.9440 -1295.6702 -1.0441

5 -1293.3270 1.2991 -1300.1402 -5.5141

6 -1294.1621 0.4640 -1302.6253 -7.9992

7 -1294.4492 0.1769 -1304.4402 -9.8141

8 -1294.5549 0.0712 -1306.0006 -11.3745

9 -1294.5961 0.0300 -1307.4582 -12.8321

10 -1294.6130 0.0131 -1308.8771 -14.2510

11 -1294.6202 0.0059 -1310.2858 -15.6597

12 -1294.6233 0.0028 -1311.7004 -17.0743

E -1294.6261

Table 2. The approximated Dirac matrix elements for the 1s1/2 orbital in the kinetic

balance approximation as a function of the number of primitive basis functions.

nprim. VLL VSS cΠ

1 -2185.832 -1457.222 -6502.377

2 -2563.276 -2253.057 -7129.592

3 -2650.936 -2667.018 -7294.838

4 -2674.380 -2885.604 -7346.651

5 -2681.424 -3013.749 -7365.113

6 -2683.749 -3099.353 -7372.476

7 -2684.578 -3164.085 -7375.733

8 -2684.893 -3218.150 -7377.311

9 -2685.018 -3266.644 -7378.139

10 -2685.071 -3312.285 -7378.605

11 -2685.094 -3356.533 -7378.880

12 -2685.104 -3400.277 -7379.051
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4.4.2. The 2p1 / 2  orbital
Now we take κ = 1 and l = 1. In this case operating with the kinetic balance operator on

P' (r) gives both the term with rl and the one with rl+2 so Q1" (r) and Q2" (r) are both

different from zero and ε' ≠ ε". Table 3 shows the convergence of ε, ε'  and ε" with

respect to the exact eigenvalue E.

Again ε' falls below the uncontracted energy ε and below the exact eigenvalue as the

basis set increases. Using an extended kinetically balanced basis as defined in (10) does

not significantly alter the result (ε").

The matrix elements leading to ε' are given in table 4.

VSS is divergent as we saw before in the 1s1/2 case.

Table 3. The approximated energy eigenvalues for the 2p1/2 orbital with respect to the

exact value in the restricted and unrestricted kinetic balance approximation as a function

of the number of primitive basis functions.

nprim ε ε - E ε' ε' - E ε" ε" - E

1 -289.5540 36.9408 -289.5547 36.9401 -289.5540 36.9408

2 -319.5654 6.9294 -319.6855 6.8093 -319.6692 6.8256

3 -324.9465 1.5483 -325.2949 1.1999 -325.2541 1.2407

4 -326.0916 0.4032 -326.6797 -0.1849 -326.6295 -0.1347

5 -326.3763 0.1185 -327.1777 -0.6829 -327.1241 -0.6293

6 -326.4563 0.0385 -327.4375 -0.9427 -327.3847 -0.8899

7 -326.4811 0.0137 -327.6230 -1.1282 -327.5671 -1.0723

8 -326.4895 0.0053 -327.7715 -1.2767 -327.7177 -1.2229

9 -326.4926 0.0022 -327.9043 -1.4095 -327.8536 -1.3588

10 -326.4939 0.0009 -328.0371 -1.5423 -327.9823 -1.4875

11 -326.4944 0.0004 -328.1602 -1.6654 -328.1071 -1.6123

12 -326.4946 0.0002 -328.2871 -1.7923 -328.2338 -1.7390

E -326.4948
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Table 4. The approximated Dirac matrix elements for the 2p1/2 orbital in the restricted

kinetic balance approximation as a function of the number of primitive basis functions.

nprim. VLL VSS cΠ

1 -588.2487 -1176.497 3388.691

2 -653.9547 -1756.138 3610.331

3 -666.8790 -2025.902 3661.971

4 -669.8956 -2153.181 3676.588

5 -670.7026 -2220.834 3681.382

6 -670.9429 -2262.467 3683.200

7 -671.0215 -2291.720 3684.000

8 -671.0494 -2314.542 3684.400

9 -671.0603 -2333.850 3684.622

10 -671.0646 -2351.146 3684.755

11 -671.0664 -2367.249 3684.838

12 -671.0674 -2383.123 3684.894

4.4.3. Discussion of the one electron results

The failure of kinetic balance in the above presented examples is of course not

surprising. For one electron atomic-like systems the exact results are known and

enlarging the size of basis sets should lead to an increasingly better description of those

solutions.

A simple explanation of the divergences of VSS can be found as was shown by Aerts3.

Operating with the kinetic balance operator on the exact solution P (r) for a 1s1/2 orbital

gives

Q'(r) ≡ ( d
dr + −1

r ) rγe−λ r = (γ − 1) rγ−1e−λ r −λ r γe −λ r
(11)

The first part of Q' (r) gives rise to the integral

Zr
2 γ− 3

e−2 λ r dr
0

∞
∫

(12)

when evaluating VSS which is divergent for

γ = 1 − Z
2

c 2
< 1

(13)
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The sample calculations show that applying kinetic balance as defined by (5) to heavily

contracted basis functions will lead to wrong results and numerical problems in the

evaluation of the nuclear attraction integrals for the small component basis.

Ishikawa et al. , however, reported4 practical calculations in which they did not observe

any  problems of this kind (contrary to earlier findings of Aerts and Nieuwpoort5). The

reason why the problem does not always show up is in our opinion that in practice Q(r)

has additional variational freedom consisting of contributions from other kinetically

balancing functions. If the large and therefore the matched small component bases are

large, the variational space might be large enough to account for the error made by

applying (5).

We think it is better to start with a more accurate relation in the first place and take the

atomic balance condition (4) as a generator for small component basis functions. A

possible problem with this balance relation is the dependence on ε and V. If we use the

generated contracted basis to describe a different system we get another potential V and

another eigenvalue ε. This means that the contracted small component functions no

longer match the newly formed combinations of large component functions and the

possibility of variational collapse appears again. Since in many-electron Fock-Dirac

calculations V is depending on the form of the solutions it seems impossible to give an

always working prescription for the generation of the small component basis. A save

way to proceed as we described previously6 is to add additional functions to the small

component in order to get enough variational freedom. The additional functions have no

matching large component function and thus might give rise to so-called spurious

solutions as Grant and Quiney2 anticipated.

4.5. Many electron systems

In this section we will discuss the position of the additional negative energy solutions in

the spectrum in some recent Fock-Dirac calculations. In all the calculations extended

balanced basis sets, fulfilling both atomic (4) and extended kinetic balance as defined

by (10), were used. This kind of basis sets, with nl large component basis functions

and ns small component basis functions, lead to a spectrum with nl orbital energies on

the positive energy side and ns orbital energies on the negative energy side of the

spectrum. A typical spectrum of those calculations is shown in figure 1.
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Figure 1. Orbital energies in a calculation on a neutral Lead atom.
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- 2mc   =  -37557.7422

In this calculation on neutral Pb all the negative energy levels remain below -2mc2, the

gap which separates the negative continuum states from the bound positive energy

states. The same kind of spectrum appears in a calculation on Eu3+, but now the upper

bound of the negative levels is shifted 0.78 a.u. downwards. This is consistent with the

interpretation of those states as positronlike: a positively charged particle will feel an

increasing repulsion and is pushed further into the continuum.

The picture changes if we take a negatively charged atom or molecule or apply a

Madelung potential. Now the negative energy levels are shifted upwards and get an

energy a little above -2mc2. The gap between those levels and the electron like positive
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energy levels remains however much larger than this shift and a clear identification of

the positive energy levels can still be given.

Orbital energies above -2mc2 also appear in the following cases:

1) Performing a calculation in which the Gaunt interaction7 is treated variationally.

This operator is the first and most important part of the more accurate Breit operator8:

B ij = − 1
2

(α i.α j)

r ij
+

(α i.r ij)(α j.r ij)

r ij
3







 (14)

The Gaunt operator probably overestimates the electron repulsion and creates thus a

(slightly) more negative potential which leads to the same kind of results as we saw in

calculations on negatively charged systems.

2) Using approximations or extrapolations during the SCF iterations.

We have observed levels going far into the gap after constructing the Fock matrix using

Aitken extrapolated orbitals. The levels disappear at convergence indicating that this is

purely a technical defect of this kind of extrapolation.

Furthermore levels just in the gap are observed when electron repulsion integrals

(SS/SS) over the small component part are ignored if they are smaller than a threshold

value  of 0.000001. This indicates one has to take some care with (completely)

neglecting those small contributions, as was done by Dyall et al.9,  but no serious

problems seem to arise.

3) Linear dependencies.

During a test calculation on Pb some very serious problems with negative energy states

were encountered with levels going up to an order of a 1000 a.u. in to the gap.

Analysing the basis sets showed linear dependencies leading to small component

overlap matrix eigenvalues of ~10-12. Removing the dependency immediately solved

the problems.

The results mentioned are summarised in table 5.
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Table 5. The position of the highest negative energy levels (a.u.) in calculations on

many electron systems.

System Approximation nlarge nsmall # in gap Highest orbital

energy + 2mc2

Pb None 162 596 0 -0.0083

Eu3+ None 158 566 0 -0.7797

Eu3+ Madelung potential 158 566 22 0.7076

Eu3+ Aitken extrapolation 296 658 4 1099.8176

Ar Gaunt interaction 90 150 12 1.3736

PbH4 Partial neglect of

SS/SS  electron

repulsion integrals

178 644 4 0.0026

4.6. Conclusions

Solution of the Dirac or the Dirac-Fock equation by means of basis set expansion can

lead to accurate and meaningful results if the small component basis set is constructed

with care and fulfils the atomic balance condition.

Strict kinetic balance can lead to failure, especially if the level of contraction increases.

Giving the small component part of the orbitals more flexibility does not produce

variational collapse since the introduced extra states are clearly separated from the

desired positive energy solutions. Using approximations in extended balance

calculations is also possible without running into variational collapse problems.

The biggest pitfall in extended balance calculations is probably the occurrence of linear

dependence problems leading to numerical inaccuracy and unpredictable results. This

can be remedied by checking these dependency in advance and adapting the contraction

coefficients to produce an orthogonal basis.
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5. The electronic structure of the PtH molecule
Fully Relativistic CI calculations of the ground and excited states

5.1. Abstract

Fully relativistic all-electron SCF calculations based on the Dirac-Coulomb hamiltonian

have been performed on the 3 lowest lying states of the PtH molecule. The resulting 4-

component Dirac-Hartree-Fock (DHF) molecular spinors are subsequently used in

relativistic Configuration Interaction (CI) calculations on the 5 lower states of PtH.

Spectroscopic properties are obtained by fitting the potential curve to a Morse function

and show good agreement with experimental data. The effect of relativistic corrections

to the Coulomb electron-electron interaction is investigated at the DHF level and is

found to be insignificant for the molecular spectroscopic properties investigated by us.

The CI wave functions are found to have only one dominant configuration, indicating a

lack of static correlation. Dynamic correlation in the d-shell is however important for

the spectroscopic properties of PtH. The results conform with a bonding scheme in

which the three lower and two upper states of PtH are assigned 5d3/2
4  5d5/2

5  σ1/2
2  and

5d3/2
3  5d5/2

6  σ1/2
2

 electronic configurations respectively. The configurations are only

approximate and are perturbed by 5d-participation in bonding. The stability of the Pt-H

bond is explained in terms of the relativistic stabilisation of the 6s orbital in analogy

with the electron affinity of the platinum atom.
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5.2. Introduction

The catalytic versatility of platinum makes it one of the most widely applied metal cata-

lysts1. A number of the reactions for which platinum is active involves hydrogen. This

has motivated extensive research on the nature of the platinum-hydrogen bonding.

Platinum hydride offers the simplest example of the platinum-hydrogen bond and this

open-shell molecule has therefore been the subject of several studies, most of them ab

initio  calculations2,3,4,5,6,7,8.

Platinum being a third row transition metal, both correlation and relativistic effects are

expected to be of importance in its chemistry9. Transition metal atoms in general are

characterised by the close proximity of nd, (n+1)s and (n+1)p orbitals which gives rise

to an abundance of low-lying atomic states with strong configurational mixing. Proper

handling of static correlation is therefore a prerequisite for the correct description of the

atomic spectra. With an increasing number of d-electrons dynamic correlation becomes

more and more significant. At the molecular level these features give rise to a number of

possible bonding mechanisms and may lead to complicated molecular spectra. An

additional complicating factor for third row transition metals in particular is that relati-

vistic effects may  significantly influence bonding and spectroscopic properties10 . Spin-

orbit effects in the platinum atom give a splitting of the order of 10,000 cm-1 for the
3D(5d96s1) state whereas the singlet-triplet splitting for this configuration is only 3,800

cm-1. The relativistic contraction of the 6s orbital and the expansion of the 5d shell will

influence the bonding and change the character of the bonding orbitals.

In the majority of ab initio  calculations on PtH relativistic effects are introduced

through the use of relativistic effective core potentials (RECPs)11 , an approach which

also yields significant reduction of computational effort relative to all-electron

calculations. Effective core potentials replace the core electrons under the assumption

that the core remains frozen during bond formation. RECPs may be obtained by fitting

the potential to a fully relativistic atomic calculation or alternatively a semirelativistic

calculation such as the Cowan Griffin method12  or the second order Douglas-Kroll

("no-pair") approximation13 . In general some averaging procedure is employed to

generate spin-free RECPs.  The RECP approach has the advantage of staying within

the non-relativistic theoretical framework so that most computational methods and

computer codes for non-relativistic calculations may be used with little or no

modification. Spin-orbit effects may be introduced by adding spin-orbit matrix elements

to the hamiltonian matrix of LS-coupled states connected through the spin-orbit

operator. The disadvantage of the RECP method is that the fitting and averaging

procedure introduces uncertainties and that the quality of the RECP may be difficult to
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assess without performing all-electron atomic and molecular calibration calculations at

the same level of approximation.

An alternative approach is to solve the relativistic Dirac-Hartree-Fock (DHF) equati-

ons14 . This will generate 4-component spinors which provide a natural description of

the relativistic effects. The disadvantage of this approach is mainly the large computer

resources necessary to carry out 4-component relativistic calculations. Over the past

few years, however, a number of DHF molecular codes and results15 ,16 ,17 ,18 ,19  have

been reported. Recently Dyall8 presented results from DHF calculations on platinum

hydrides, including PtH. The next step towards a quantitatively correct description of

heavy atoms like platinum is to include electron correlation in the formalism and go

beyond the mean field approach. The molecular spinor basis generated by the DHF

method may be used to generate many-electron (determinantal) wave functions with

which one can expand the Configuration Interaction (CI) equations in a completely

relativistic framework.

In this work we present the results of fully relativistic CI calculations on the 5 lowest

states of the PtH molecule and compare the result with other methods and with experi-

ment. Below we give a brief introduction to the computational methods used by us. We

then discuss the atomic aspects of calculations on PtH before presenting results from

molecular DHF and CI calculations.

5.3. Computational methods

We have performed CI calculations using references obtained from DHF calculations.

Below a short resumé of the DHF method is given followed by a description of the CI

method recently  developed by one of us [LV]. Unless otherwise stated all calculations

have been performed using the MOLFDIR program package20.

5.3.1. The DHF method

The starting point of our calculations is the Dirac-Coulomb equation

H Ψ = E Ψ (1)

H  =  hi∑
i

N

  +  gij∑
i < j

 

(2)

where h is the one-electron Dirac hamiltonian
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h  =  
V. I2 c ⋅p

c ⋅p V – 2c2  ⋅ I2

(3)

I2 and σ are the 2 x 2 identity and Pauli matrices respectively, while the potential V

describes the interaction of the electrons with the fixed nuclear framework. A detailed

description of this hamiltonian may be found in standard textbooks21 ,22 . The electron-

electron interaction, gij, is given by  the Coulomb operator

gij   =  1
rij (4)

and represents in this context the 0th order approximation to the full relativistic electron-

electron interaction. A first order correction is provided by the Breit operator23 , which

may be split24  into a magnetic part, usually termed the Gaunt interaction25 , and a

retardation part.

gij
Breit  = – i ⋅ j

rij
– i ⋅ ∇i j ⋅ ∇j rij

2
=  gij

Gaunt  +  gij
retardation 

(5)

Our computer program allows for the inclusion of the Gaunt interaction either in a

variational or in a perturbative scheme.

From the Dirac-Coulomb equation open-shell DHF equations can be derived in the

same way as the non-relativistic Hartree-Fock equations26 . By minimising the

(averaged) energy expression of a system with one open shell, we get the following set

of equations

FC = h + QC + QO + αLO FO = h + QC + aQO + αLC (6)

QC = Jk - Kk∑
k

QO = f Jm - Km∑
m

(7)

LC = Lk∑
k

LO = f Lm∑
m

 (8)

Ji | j > = < i | g12  | i > | j > Ki | j > = < i | g12  | j > | i > (9)

Li | j > = < i | QO | j > | i > + < i | j > QO | i > (10)
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In these equations k and m are used to label closed and open shell molecular 4-spinors

respectively. The fractional occupation number (f) of the open shell spinors and the

coupling coefficients (a and α) are defined by the number of open shell electrons (n)

and the number of open shell spinors (m)

f = n
m a = 

m (n - 1)
n ( m - 1)

α = 1-a
1-f

(11)

 The DHF equations are expanded in a Gaussian type basis set. This basis set is made

up of two subsets describing the upper (large) components and the lower (small) com-

ponents of the spinors. In order to get a correct representation of all operators these ba-

ses are chosen to be related by the kinetic or atomic balance relation27 .  For open shell

systems the average of configuration energy is minimised after which the energies of

individual states can be obtained by Complete Open Shell Configuration Interaction28

(COSCI) —  diagonalisation of the CI-matrix of all possible configurations in the open

shell manifold.

5.3.2. The Relativistic CI method

We have developed a relativistic version of the Restricted Active Space Configuration

Interaction (RASCI)29  method which can be used to improve the wave functions and

energy differences found in the DHF (-COSCI) step.

In the Restricted Active Space method the active spinor space is divided in 3 groups.

The first group (RAS1) contains the highest occupied closed shell spinors of the

reference determinant(s). The second group (RAS2) contains the open shell spinors of

the reference determinant(s). The spinors that were unoccupied in the reference

determinant(s) are in the third group (RAS3). The CI space is now defined by

specifying a maximum excitation level (nH1) from RAS1 and a maximum excitation

level (nE3) to RAS3. Determinants that fulfil the constraint of having nH1, or less, holes

in RAS1 and nE3, or less,  electrons in RAS3 form the CI space. This definition allows

most of the conventional types of CI to be done as a special case.

To describe the method it is convenient to write the Dirac-Coulomb-(Gaunt)

hamiltonian in second quantised form. Using the generators of the unitary group Eij =

ai+aj  the hamiltonian can be written as

H =  i  h  j  Eij∑
i,j

 + ij  g  kl  Eij Ekl - Eil δjk∑
i,j,k,l

(12)
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In this equation molecular spinors are labelled by i, j, k and l. The summation is

restricted to the electron solutions, since we neglect any (virtual) positron-electron pair

creation. We expand the many-electron wave functions in the determinantal basis {ΦI}

defined above. The result is a matrix representation of the hamiltonian which can be

expressed as a sum of 1- and 2-electron integrals multiplied by coupling constants γij
IJ

and Γijkl
IJ

 respectively.

HIJ = hij  γij
IJ∑

i,j

 +  ij | kl   Γijkl
IJKL∑

i,j,k,l

(13)

with  hij = <i | h | j >, (ij | kl) = (ij | g | kl),  γij
IJ =   I  Eij  J   and  Γijkl

IJ
 =   I  Eij  Ekl   J .

Since the matrix in general will be too large to hold in memory, we use the direct dia-

gonalisation technique of Davidson30  to find the desired roots. The main difference

with non-relativistic direct CI methods is that the number of relativistic integrals is

about 24 times as large since each molecular orbital corresponds to two molecular spi-

nors. Another complication is that the integrals in general will be complex since the

hamiltonian contains complex operators. Thus the number of virtual spinors and the

number of determinants that can be used is smaller than what is presently possible with

efficient non-relativistic CI methods. Our direct RASCI code can at present handle

expansions up to about  200,000 determinants using an active spinor space of about

100 spinors. In the present application a number of high-lying virtual spinors were

deleted to make the calculations feasible.

5.4. Atomic calculations

The classification of some of the observed lines in the platinum atomic optical spectrum

was done already in 1927 and a review of the assigned lines can be found in Moore's

tables31 . The ground state of the platinum atom is a J=3 state designated 3D3.The first

two states arise mainly from the 5d9(2D5/2)6s1 configuration and the 7th and 8th states

from the  5d9(2D3/2)6s1 configuration. The atomic spectrum is complicated because the

configurations d9s1 and d8s2 are close in energy and the individual states mix strongly

with each other due to the strong spin-orbit coupling8. This makes the assignment of

LS-coupling term symbols rather arbitrary and we shall use instead the J value and

parity to designate the states.  Below we describe the basis set used in the molecular

calculations and compare finite basis DHF results with corresponding numerical  results

for an estimate of the sensitivity to basis set errors. We then discuss results obtained at

different levels of theory and compare them with the experimental (spectroscopic) data
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of the Pt atom. The relativistic optimisation of single exponents and all the numerical

calculations were done using the  GRASP atomic structure code32  .

5.4.1.  Basis Sets

The platinum basis was derived from a non-relativistically optimised 22s16p13d8f

Gaussian basis33  (basis I). Due to the relativistic contraction of s-and p-orbitals a rela-

tivistic reoptimisation of the basis would be expected to give a shift towards higher

exponents in the basis . We have not done this explicitly, but found that inclusion of a

relativistically optimised p-function with exponent 7.9E5 gave an improvement of 827

mH in the total energy (see also reference 34) . No tight s-exponent was needed, due to

our use of a finite nucleus model35  (a Gaussian charge distribution with exponent

0.12E9). This large (L) component primitive basis was subjected to general contraction

using the coefficients from an atomic DHF calculation and augmented with diffuse

correlation and polarisation functions. Due to the relativistic contraction of p-orbitals the

outer p-exponent in the primitive basis mainly describes the 6p-orbital and it was thus

sufficient to add only one diffuse relativistically optimised p-function to obtain a double

zeta description of this orbital. The basis was furthermore supplemented with one d-

function and one f-function, the latter contracted from three primitives36 . The small (S)

component contracted basis was generated using the atomic balance relation37 . For both

basis subsets different contraction coefficients were used for spinors that differ by their

j-value, but an overlap criterion was used to reduce the resulting number of contracted

functions. The final  [8s10p9d3f(L)|6s13p12d11f4g(S)] basis (basis II) was used in the

subsequent atomic and molecular calculations. The two different basis sets are

compared in table 1.

For hydrogen a primitive 6s1p Gaussian basis was relativistically contracted to 3s1p.

The hydrogen basis set is given in appendix A. The atomic energy is -0.499952 H, dif-

fering from the numerical energy by 55 µH. The size of all basis sets is summarised in

table 2.
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Table 1. Total and orbital energies (in Hartrees) from numerical and finite basis DHF

calculations on the  5d3/2
4 5d5/2, 6s1/2

6 configurational average of the platinum atom.

Numerical DF Basis I Basis II

Total Energy -18434.181187 -18433.181171 -18434.007850

ε (1s1/2) -2899.6195 -2899.6450 -2899.6270

ε (2s1/2) -514.7000 -514.7116 -514.7124

ε (2p1/2) -492.3144 -492.0991 -492.2879

ε (2p3/2) -428.6614 -428.6741 -428.6756

ε (3s1/2) -123.3795 -123.3897 -123.3926

ε (3p1/2) -113.3776 -113.3291 -113.3805

ε (3p3/2) -99.1889 -99.2001 -99.2024

ε (3d3/2) -82.7461 -82.7547 -82.7560

ε (3d5/2) -79.7133 -79.7237 -79.7262

ε (4s1/2) -27.8662 -27.8868 -27.8774

ε (4p1/2) -23.5882 -23.5944 -23.5968

ε (4p3/2) -20.1647 -20.1877 -20.1754

ε (4d3/2) -13.1548 -13.1556 -13.1642

ε (4d5/2) -12.5010 -12.4992 -12.5110

ε (4f5/2) -3.4763 -3.4963 -3.4855

ε (4f7/2) -3.3387 -3.3596 -3.3475

ε (5s1/2) -4.4622 -4.4793 -4.4667

ε (5p1/2) -3.0409 -3.0527 -3.0445

ε (5p3/2) -2.4255 -2.4410 -2.4292

ε (5d3/2) -0.4970 -0.4902 -0.4997

ε (5d5/2) -0.4191 -0.4178 -0.4216

ε (6s1/2) -0.3080 -0.3062 -0.3084

DHF+Breit: -18413.910101 DHF+Gaunt: -18410.843679

Table 2. Basis set sizes.

 

         Large component                 Small component

primitive contracted primitive contracted

Pt Basis I 22s16p13d8f 16s22p16d13f8g

Pt Basis II 22s18p14d11f 8s10p9d3f 18s22p21d14f11g 6s13p12d11f4g

H Basis 6s1p 3s1p 1s6p1d 1s3p1d
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5.4.2. The atomic spectrum

The first 12 lines in the platinum atomic spectrum arise from the 5d86s2, 5d96s1 and

5d10 configurations. In principle the excitation energies can be calculated by performing

a full CI within this configurational space. However, it is difficult to find a one-particle

basis which describes all configurations in a balanced way. It has been pointed out by

Hay38  that orbitals of first-row transition metal atoms vary appreciably from one va-

lence state to another. This also holds true for the platinum atom. Radial expectation

values of the lower J = 0,2,3,4 atomic states from numerical DHF calculations are

presented in table 3. We see that they may differ by as much as 0.5 bohrs. As a further

complication the 5d86s2 configuration will be biased in an optimisation of spinors for

the total energy average of all states arising from the three configurations, since this

configuration gives rise to the majority of these states. A numerical calculation based on

this spinor set therefore gives a J=4 (5d86s2) ground state which is not in agreement

with experiment. A better choice for one spinor set to describe all configurations is the

relativistic configurational average of the 5d3/2
4 5d5/2

4 6s1/2
2 , 5d3/2

4 5d5/2
5 6s1/2

1  and

5d3/2
4 5d5/2

6 6s1/2
0  configurations. This average yields spinors that are most suitable for

the low-lying states and will describe d8s2 and d9s1 states about equally well, but with

the d10 state somewhat high.

Table 3. Radial expectancies (Bohrs) of the lower J = 0,2,3,4 states of platinum. Non-

relativistic results have been obtained by scaling the speed of light by a factor of 1000.

Relativistic J = 0 J = 2 J = 3 J= 4

5d3/2 1.665 1.608 1.611 1.561

5d5/2 1.778 1.693 1.703 1.629

6s 2.469 3.094 3.098 3.004

Nonrelativistic "d10" "d9s1" "d8s2"

5d 1.694 1.615 1.549

6s 2.366 3.708 3.546

We have performed both numerical and finite basis DHF atomic calculations using the

latter relativistic average. The resulting spinors were used in COSCI calculations to

obtain the energy of individual atomic states. The finite basis calculations were perfor-

med in Oh double group symmetry. The results of the DHF and COSCI calculations are

presented in table 1 and 4 respectively. The total DHF energy obtained with the finite

basis is 173 mH above the numerical limit while the differences in the COSCI spectrum

indicate that the basis set is accurate to about 0.02 eV in the description of atomic split-

tings.
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Table 4. Spectrum of the platinum atom. Figures in electronvolts, relative to the J=3

ground state.

J,

Parity

Experiment.9 Num.

DHF

Basis set

DHF

Num.

DHF+B

Basis set

DHF+G

Basis set

CI

1 3+ "2D5/2⊗2S" 0.000 0.000 0.000 0.000 0.000 0.000

2 2+ "2D5/2⊗2S" 0.096 0.159 0.163 0.145 0.146 0.145

3 4+ "3F4
" 0.102 0.095 0.116 0.039 0.045 0.262

4 0+ "1S0
" 0.761 2.173 2.186 2.151 2.160 1.822

5 2+ "3P2
" 0.814 0.846 0.856 0.803 0.805 0.926

6 3+ "3F3
" 1.254 1.280 1.302 1.190 1.195 1.378

7 1+ "2D3/2⊗2S" 1.256 1.146 1.146 1.109 1.107 1.206

8 2+ "2D3/2⊗2S" 1.673 1.868 1.874 1.814 1.812

9 2+ "3F2
" 1.922 2.170 2.192 2.082 2.087

10 0+ 3.037 3.039 3.034 3.037

11 1+ "3P1
" 2.302 2.786 2.808 2.697 2.702 2.691

12 4+ "1G4
" 2.724 3.110 3.132 3.022 3.027 3.180

13 2+ "1D2
" 3.303 3.649 3.668 3.542 3.545 3.562

14 0+ 6.813 6.832 6.716 6.719

The finite basis results as well as the numerical results in table 4 show rather poor

agreement with experiment. There are a number of possible reasons for these

discrepancies. One of these is the neglect of correlation effects which are expected to be

important. We therefore performed a somewhat larger CI calculation with the finite

basis method. The number of high lying virtuals neglected in the atomic CI was the

same as in the subsequent molecular calculations (70) in order to facilitate the evaluation

of molecular dissociation energies. We included the 5d3/2, 5d5/2 and 6s1/2 spinors in

the RAS2 space and 60 virtual spinors in the RAS3 space. The CI was then set up to

allow all single and double excitations from 10 electrons in the (5d3/2,5d5/2,6s1/2)

manifold giving an expansion of 889,416 determinants, which is reduced by symmetry

to 111,646. The results should have approximately the same precision as the molecular

results. These CI calculations (table 4) give the right order of the three lowest states,

although the magnitude of the splittings is still not correct. The correlation energy for

the ground state was found to be 233 mH.

Another possible cause of disagreement with experiment is the neglect of relativistic

corrections to the Coulomb electron-electron interaction. We have estimated the Gaunt

and Breit corrections from perturbation theory. The results are not strictly
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commensurate since the first (Gaunt only) calculation was done in the finite basis set

approach and the other (Breit) was done with the numerical GRASP code. The

corrected DHF energies in table 1 indicate, however, that the Gaunt correction forms

the major contribution to the Breit correction. As seen from table 4, at the COSCI level

the trends in the Breit corrected splitting are very well represented with the Gaunt only

calculation and we therefore conclude that the Gaunt only approach is accurate enough

for our purposes. The effect of the Gaunt interaction on the atomic spectrum of

platinum is of the same order as the CI corrections and the influence of both on

molecular properties should therefore be considered.

From our atomic calculations we draw the conclusion that it is difficult to obtain a

quantitatively correct description of the platinum atomic spectrum. The Breit (or Gaunt)

interaction as well as correlation effects should be accounted for. In our atomic calcula-

tions basis set deficiencies appear to be small compared to the other sources of errors.

5.5. Molecular calculations

In a simple approach to PtH within a non-relativistic framework (Hunds case a) the Pt-

H bond may be regarded as a σ(s - s) bond arising from the platinum d9s1 configura-

tion. According to Mulliken39  the electronic structure of most diatomic hydrides may be

accounted for by assuming that the electrons of the heavier atom retain their n,l, quan-

tum numbers in the molecule and furthermore have a definite λ = |ml| value imposed by

the strong axial electric field of the hydrogen nucleus.  The electronic configuration of

PtH may then be given as 5d9σ2 and will give rise to three states, characterised by Λ =
|ML| and Σ = |MS|, in the order  2∆ < 2Π < 2Σ with 2∆ as the ground state, provided

that the bonding orbital has the same character in all three states. The splitting between

the three states will depend chiefly on the splitting of the non-bonding d-orbitals in the

axial field of the hydrogen atom.

The analogous approach within the fully relativistic framework (Hunds case c) first

considers the spin-orbit splitting on the platinum atom, that splits the 5d shell into a

5d3/2 and a 5d5/2 shell. The configurations 5d3/2
4  5d5/2

5  σ1/2
2  and 5d3/2

3  5d5/2
6  σ1/2

2  give

two groups of states that can be characterised by their Ω = |MJ| value. The lower group

(1) of three states arises from the 5d3/2
4  5d5/2

5  σ1/2
2  configuration and will be in the order

5/2(1) < 3/2(1) < 1/2(1) with Ω = 5/2 as the ground state. The upper group (2) has the

two states arising from the 5d3/2
3  5d5/2

6  σ1/2
2

 configuration in the order 3/2(2) < 1/2(2).

With the platinum 5d-orbitals so close in energy to the hydrogen s-orbital this simple

bonding picture may be perturbed by d-participation in the bond, a feature that will

mainly change the relative position of Ω = 1/2 states in the spectrum.
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Figure 1. Spectrum of PtH based on a s-s platinum-hydrogen bond arising from the Pt

(d9s1) configuration. The figures in brackets are the excitation energies Te obtained

from the relativistic CI. Note the reordering of 3/2(1) and 1/2(1) states.
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The two bonding schemes and their predicted spectra (sketched in figure 1) are connec-

ted by the spin-orbit interaction which splits the three ΛΣ - states into 2Σ1/2, 2Π1/2,
2Π3/2,  2∆3/2 and 2∆5/2  states.  The strong spin-orbit coupling observed in platinum

gives reason to expect considerable mixing between 2Σ1/2 and 2Π1/2 as well as between
2Π3/2 and 2∆3/2, thus making a Λ Σ - assignment to the resulting states meaningless.

We will therefore in general label the spinors with ω = |mj| and the many-electron states

with Ω (Hunds case c) and discuss bonding in PtH in terms of the latter bonding

scheme.

5.5.1. Computational details

The molecular calculations were performed using C4v double group symmetry as our

program package cannot exploit the full C∞v double group symmetry. In this symmetry

ω = 3/2, 5/2 spinors transform as the E2 representation, while the ω = 1/2, 7/2 spinors

transform as the E1 representation. At the DHF level the lowest three states (1/2(1),

3/2(1) and 5/2(1)) are described by one-determinantal wave functions with a hole in the

highest E1 spinors, a hole in the second highest E2 spinors, or a hole in the highest E2

spinors, respectively. We have calculated the energies of the molecule at six distances
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from 1.5 Å to 1.6 Å. The energy of the separated atoms was calculated by taking the

sum of the DHF platinum J=3 COSCI energy and the hydrogen energy calculated with

our hydrogen basis. At three points the Gaunt interaction was calculated for the Ω = 5/2

and 1/2 states as a perturbation after the SCF process.

Using the spinor set generated by the DHF calculations three separate CI calculations

were performed at each Pt-H distance. One CI calculation was performed for E1 states

using the Ω=1/2 DHF wave function as reference, while the Ω=3/2 and 5/2 DHF wave

functions were separate references in two CI calculations for E2 states. We put the ten

occupied valence spinors into the RAS1 space, the two open valence spinors in RAS2

and 70 virtual spinors in RAS3. Virtual spinors with energies above 3.4 a.u. are dele-

ted. All excitations from RAS1 to RAS2 are allowed, and single and double excitations

from these spaces to RAS3 are allowed. This procedure is roughly equivalent to a

multi-reference singles and doubles CI in which the reference consists of  the six lowest

two-fold degenerate states. The resulting CI space consists of  535,932 determinants

which is reduced by symmetry to 133,983 determinants for each component of the E1

and E2 representations. Only the Coulomb interaction was included in the two-electron

integrals. Spectroscopic constants for PtH at the CI as well as the DHF level were

obtained by fitting the potential curve to a Morse function. In accordance with the

bonding scheme outlined above we used the platinum J = 3 (5d9(2D5/2)6s1) atomic

asymptote for the lower three states and correspondingly the J = 1 (5d9(2D3/2)6s1)

asymptote for the upper two states.

5.5.2. DHF results

The results from our DHF calculations are presented in table 5. The De values will be

somewhat high since the atomic energies were based on an average spinor set while the

molecular results were obtained by optimisation of the separate states. The splitting

between the lowest states is hardly affected by the Gaunt interaction. Hence, differential

effects which are of importance for the atomic spectrum are of little significance for the

molecular spectroscopic constants calculated. In our atomic calculations we found that

the size of the Breit and Gaunt corrections is strongly dependent on the electronic

configuration. As several configurations contribute to the lower states of the platinum

atom one may expect differential effects of the Breit and Gaunt corrections on the

atomic spectrum. The lack of corresponding differential effects on the three lower states

of the PtH spectrum is then consistent with our assumption that all these states have a

5d3/2
4  5d5/2

5  σ1/2
2  configuration. Our molecular calculations further show insignificant

differential effects of the Gaunt interaction on bond lengths and vibrational constants.

This is consistent with previous calculations on hydride molecules40  which showed that
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the differential effect of the Gaunt term is quite small and may be neglected for most

molecular properties.

Table 5. Molecular properties of PtH calculated by the DHF method. DHF+G refers to

results obtained by the DHF method with the Gaunt correction added as a perturbation.

Method State re (Å) De (eV) ωe (cm-1) ωexe (cm-1) Te (eV)

DHF 5/2 (1) 1.548 2.28 2251 69 0.00

1/2 (1) 1.568 1.96 2095 70 0.32

3/2 (1) 1.581 1.86 2044 69 0.41

DHF+G 5/2 (1) 1.549 2.32 2246 68 0.00

1/2 (1) 1.568 2.00 2095 68 0.31

The spinors obtained from the DHF calculation can be analysed by Mulliken population

analysis41  in much the same way as non-relativistic orbitals. Table 6 shows the valence

populations of the DHF wave functions in terms of the atomic basis functions.

Conclusions based on a Mulliken population analysis should be viewed with caution as

the analysis is basis dependent and the total energy is invariant to rotations among

occupied spinors. An exception to this is the open shell spinor that can not be rotated

into other spinors. Due to this property, the significant platinum s-contribution (0.348)

to the open shell-spinor for the 1/2(1) state is a clear indication of considerable d-

participation in the Pt-H bond. The total valence populations confirm that the dominant

configuration of the platinum atom contributing to the molecule is d9s1. The d valence

population is 9.0 for the 1/2(1) state, but somewhat smaller – about 8.7 – for the 3/2(1)

and 5/2(1) states. This may be taken as an indication of some contribution from the pla-

tinum d8s2 atomic configuration to the bonding in the latter two states. The platinum

atom is found to have a small positive charge of about 0.13, which is in agreement with

the other ab initio calculations. The density contribution of the small component basis

functions (0.002 electron) is hardly noticeable at this scale.
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Table 6. Valence density Mulliken population analysis of the DHF wave functions for

the 3 lower states of PtH. Net charges are derived from total density.

Pt net charge: 0.124

ω Occ. Pt(s) Pt(p) Pt(d) H(s) H(p) σ π δ

1/2 6.0 1.161 0.068 3.655 1.097 0.013 4.005 1.994 0.000

3/2 4.0 0.000 0.000 3.994 0.000 0.000 0.000 2.000 2.000

5/2 hole 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.999

Sum 11.0 1.161 0.068 8.648 1.097 0.018 4.005 3.994 2.999

Pt net charge: 0.143

ω Occ. Pt(s) Pt(p) Pt(d) H(s) H(p) σ π δ

1/2 4.0

+hole

0.412

0.348

0.071

0.000

2.421

0.614

1.080

0.037

0.012

0.001

2.301

0.855

1.698

0.145

0.000

0.000

3/2 4.0 0.000 0.000 3.993 0.000 0.000 0.000 2.000 2.000

5/2 2.0 0.000 0.000 1.999 0.000 0.000 0.000 0.000 2.000

Sum 11.0 0.759 0.072 9.027 1.117 0.018 3.156 3.844 3.999

Pt net charge: 0.148

ω Occ. Pt(s) Pt(p) Pt(d) H(s) H(p) σ π δ

1/2 6.0 1.102 0.071 1.842 1.123 0.015 4.008 1.991 0.000

3/2 2.0

+ hole

0.000

0.000

0.000

0.000

1.997

0.998

0.000

0.000

0.001

0.001

0.000

0.000

0.856

0.572

1.144

0.428

5/2 2.0 0.000 0.000 1.999 0.000 0.000 0.000 0.000 2.000

Sum 11.0 1.102 0.716 8.679 1.123 0.018 4.008 3.419 3.571

The population analysis may also be set up in terms of the single group functions σ, π
and δ.  These figures are also shown in table 6 and illustrate clearly the failure of the ΛΣ
coupling scheme. The Ω=5/2 ground state may be described by the single

1σ22σ21π41δ3 configuration, but the Ω=1/2 state is clearly not  a pure 1σ22σ11π41δ4

configuration. In the Ω=3/2 states the mixture of the 1σ22σ21π31δ4 and 1σ22σ21π41δ3

configurations is so strong (58% vs. 42%) that the assignment to one of them is dif-

ficult. This strong mixing was also observed by Balasubramanian and Feng6 and by

Dyall8.
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Another way of looking at the PtH electron distribution is by plotting the electron den-

sity. A plot of the total density will be dominated by the contribution of the platinum

core electrons, and we have therefore plotted the density of open shell spinors only for

the three lower states (figures 2 a-c).  The plots clearly show that the hole is located in a

platinum d spinor.

Figure 2. Electron density plots of the open shell spinors. Coordinates of the Pt atom

are (0, 0), coordinates of the H atom are (0, 2.93). Figures in atomic units.

a) =5/2 open shell spinor ; b) =1/2 open shell spinor; c) =3/2 open shell spinor.
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5.5.3. CI results

The CI results are presented in table 7. In the lower three states the weights of the DHF

references are approximately 90 % while other configurations contribute at most 0.4 %.

Static correlation is therefore not very important in the PtH molecule, as opposed to the

platinum atom. The correlation energy is 258 mH for the 5/2(1) and 3/2(1) states and

261 mH for the 1/2(1). The somewhat larger correlation energy for the 1/2(1) state may

be attributed to the larger valence d population of the corresponding reference.  The

effect on the electronic excitation spectrum is a small but significant reduction of the

splitting between the 5/2(1) and 1/2(1) state. Correlation further shortens the bond

lengths by 3-4 pm. Correlating f-functions in the basis appears to be of importance, as

was demonstrated by performing a small CI calculation on the 5/2(1) state in which 32

more virtual spinors, including the 14 non-bonding 5f spinors, were deleted from the

active space. A three-point fit then gave a bond length of 1.544 Å as compared with

1.518 Å obtained with the larger CI. From the bond shortening and the enlargement of

De and  ωe one can conclude that the bond is stronger than would be expected on basis

of the DHF results. The gap between the lower three and the upper two states is about

the same magnitude as the spin-orbit splitting in the platinum d-shell (Table 4).

Table 7. Molecular properties of PtH calculated by the relativistic CI method.

State re (Å) De (eV) ωe (cm-1) ωexe (cm-1) Te (eV)

5/2 (1) 1.518 2.98 2458 63 0.00

1/2 (1) 1.526 2.74 2419 66 0.24

3/2 (1) 1.542 2.54 2313 65 0.44

3/2 (2) 1.540 2.73 2365 62 1.46

1/2 (2) 1.562 2.58 2277 64 1.61

5.6. Discussion

Our CI as well as DHF results fit within the relativistic bonding scheme outlined above

in which the electronic configuration of the three lower and two upper states of PtH

may be written as 5d3/2
4  5d5/2

5  σ1/2
2  and 5d3/2

3  5d5/2
6  σ1/2

2
 respectively. The assigned

configurations are only approximate and are perturbed by 5d-participation in bonding

that changes the order of the three lower states from the expected 5/2(1) < 3/2(1) <

1/2(1) sequence to 5/2(1) < 1/2(1) < 3/2(1). Further confirmation of the bonding

scheme stems from the DHF results of Dyall8. Dyall performed DHF calculations on

the five lower states of PtH using a 9s8p7d3f contracted Gaussian large component

basis for platinum derived from the same primitive Gaussian basis (basis I) as our con-
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tracted Pt basis(basis II). The lowest three PtH states were analysed by Dyall to be

mainly d5/2 hole states while the upper two are essentially d3/2 hole states.

Most ab initio  calculations on PtH, however, employ spin-free RECPs and optimise

the ΛΣ − states (2∆,2Π and 2Σ) as a first stage. In table 8 we list some results obtained

for the ΛΣ − states. Rohlfing et al4 used a RECP obtained from the Cowan-Griffin

method12  and a 5s5p3d1f uncontracted Gaussian valence basis. They did unrestricted

Hartree-Fock (UHF) calculations and then introduced electron correlation through

fourth order Møller-Plesset perturbation theory [MP4(SDTQ)]. Balasubramanian and

Feng6, using a j-averaged RECP fitted to numerical atomic DHF calculations and a

3s2p3d contracted Gaussian valence basis, performed a small Complete Active Space

SCF (CASSCF) calculation with 11 electrons in an active space of 14 spin-orbitals.

They then did multireference singles CI (MRSCI) to determine potential surfaces and

multireference singles plus doubles CI (MRSDCI) to determine dissociation and

excitation energies at the optimised geometries. At the singles level the 2∆ state is 0.12

eV above the 2Σ state, while the order is reversed at the MRSDCI level with 2∆ as the

ground state. Gropen et al.7 obtained their RECP from an atomic calculation using the

second order Douglas-Kroll approximation13  and employed a 3s3p4d2f contracted

Gaussian valence basis.  They did a CASSCF-calculation with 11 electrons in an active

space of 14 spin-orbitals followed by MRSDCI. Their article contains an error as the
2Σ state at the CASSCF level is 0.04 eV above and not 0.34 eV below the 2∆ state, the

latter being the MRSDCI result.

Table 8. Excitation energies Te (eV) for - states calculated by different methods.

                        RECP         All - electron

State MP4a MRSDCIb MRSDCIc CASSCFd MRSDCIe

2Σ   0.00   0.00   0.00   0.00   0.00
2∆ - 0.16 - 0.05   0.34 - 0.09   0.09
2Π   0.52   0.69   0.69   0.50   0.73

a) Rohlfing et al.4: RECP-UHF-MP4

b) Balasubramanian and Feng6: RECP-CASSCF-MRSDCI

c) Gropen et al.7: RECP-CASSCF-MRSDCI

d) Gropen43 : All-electron CASSCF using the second order Douglas-Kroll approximation

e) Gropen43 : All-electron CASSCF-MRSDCI using the second order Douglas-Kroll approximation

The results obtained for the ΛΣ − states and listed in table 8 vary considerably and it is

difficult to assess to what extent this spread may be related to the correlation treatment
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or to the quality of basis sets or the RECPs. The RECP used by Wang and Pitzer3 was

fitted to a j-averaged atomic DHF calculation and appears to be too repulsive as the

resulting bond lengths and spectrum deviate markedly from all other results. Clearly

there is a need for an all-electron molecular calibration calculation at this level of

approximation. Gropen42  has recently performed an all-electron CASSCF-MRSDCI

using the second order Douglas-Kroll approximation13 and a 8s7p5d3f contracted

Gaussian basis. Preliminary results  from CASSCF as well as MRSDCI calculations at

1.55 Å are included in table 8. The results indicate that the 2∆ and 2Σ states are near

degenerate, but that correlation tends to favour 2Σ as ground state.

Spin-orbit interaction is introduced in the RECP calculations through various

perturbational schemes. Balasubramanian and Feng6 add spin-orbit matrix elements to

their CI matrix. The spin-orbit matrix elements were derived from the RECP43  and thus

depend on the quality of the potential. Rohlfing et al.4 introduce spin-orbit splitting

semi-empirically. To the diagonal matrix of electronic energies of the ΛΣ - states they

add a spin-orbit matrix for the separated atoms using an atomic spin-orbit parameter

derived from experiment. They do not state exactly what parameter value they used, but

it appears to be the parameter A = 0.418 eV derived from the splitting of the platinum

positive ion d9 state44 . The approach of Gropen et al.7 is quite similar, but neglects off-

diagonal matrix elements.

Experimental data on the PtH molecule are scarce and restricted to the 3/2 and 5/2 sta-

tes. Most experimental work has been done by the group of Scullman45 , but one may

also mention the early study by Loginov46  . Recently McCarthy et al.47  reported laser

excitation and Fourier transform spectroscopic results which give more precise estima-

tes of 5/2(1)→3/2(1)and 3/2(1)-5/2(1)→3/2(2) excitation energies. They also note a

reversal of parity in the Ω-doubling for vibronic states at the 3/2(2) level and attribute

this to the 1/2(2) state being above and pushing down on 3/2(2) vibronic states. This is

the only experimental indication so far of the position of Ω = 1/2 states in the PtH

spectrum. The possible 1/2 - 1/2 transition reported by Scullman was later shown to be

caused by a gold impurity48 . The experimental studies indicate an unusual stability of

the Pt-H bond. The experimental value of 3.6±0.4 eV obtained by Birge-Sponer

extrapolation is the largest measured bond energy of any transition metal hydride49 .

Table 9 lists excitation energies Te and table 10 bondlengths re and harmonic frequen-

cies ωe obtained from a number of studies of PtH. Experimental  excitation energies Te

were deduced from the corresponding T0 values using the formula

Te  =  T0
0 + 1

2
 ∆ωe – 1

4
 ∆ωexe . The relativistic CI gives the best overall agreement with
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experiment for these properties. Since our relativistic CI results should be better than

our DHF results, agreement on the DHF level with the 5/2(1)-3/2(1) splitting is

probably somewhat coincidental. The good agreement between our DHF results and

those of Dyall8 should also be noted. The differences in re are smaller than 0.005 Å

while the excitation energies differs by at most 0.02 eV. This indicates that basis set

errors in the two calculations are of equal size.

Table 9. Comparison of excitation energies Te (in eV) for states of PtH obtained by

different methods.

RECP All - electron

State MP4a SDCIb SDCIc SDCId DHFe DHFf Rel. CIf Expg

5/2 (1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1/2 (1) 0.31 0.19 0.19 0.11 0.34 0.32 0.24 --

3/2 (1) 0.45 0.52 0.45 0.44 0.42 0.41 0.44 0.41

3/2 (2) 1.28 1.35 1.29 1.37 1.43 -- 1.46 1.45

1/2 (2) 1.57 1.35 1.55 1.61 1.55 -- 1.61 --

a) Rohlfing et al.4: RECP-UHF-MP4+spin-orbit(semi-empirically) [A = 0.418 eV]

b) Balasubramanian and Feng6: RECP-CASSCF-MRSDCI + spin-orbit(RECP)

c) Gropen et al.7: RECP-CASSCF-MRSDCI  + spin-orbit(semi-empirically) [A = 0.418 eV]

d) Gropen43 : All-electron CASSCF-MRSDCI using the second order Douglas-Kroll approximation +

spin-orbit [A = 0.467 eV]

e) Dyall8: DHF

f) Present work

g) McCarthy et al.47.
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Table 10. Bondlengths re (in Å) of PtH calculated by different methods. Corresponding

harmonic frequencies e (in cm-1) are given in parenthesis.

State MRSCIa DHFb DHFc Rel. CIc Experimentd

5/2 (1) 1.55  (2177) 1.551  (2234) 1.548  (2251) 1.518  (2458) 1.528  (2378)

1/2 (1) 1.54  (2188) 1.573  (2094) 1.568  (2095) 1.526  (2419) --

3/2 (1) 1.58  (2155) 1.584  (2080) 1.581  (2044) 1.542  (2313) 1.520  (2265)

3/2 (2) 1.59  (2179) 1.577  (2162) -- 1.540  (2359) --         (2349)
e

1/2 (2) 1.58  (2021) 1.590  (2097) -- 1.562  (2225) --

a) Balasubramanian and Feng6: RECP-CASSCF-MRSCI + spin-orbit(RECP).

b) Dyall8: DHF.

c) Present work.

d) Scullman et al.45

e) Calculated using the formula ω e  =  ∆G1/2  –  2ω exe , in which the ∆G1/2 value obtained by McCarthy

et al.47  and our calculated value for ω exe were used.

The excitation energies calculated by Balasubramanian and Feng6 agree rather well with

our CI results, although their two upper states appear rather low indicating that spin-

orbit splitting is somewhat underestimated. Their calculated bond lengths are

appreciable longer and harmonic frequencies smaller than ours, a feature that is

probably explained by insufficient correlation particularly due to their lack of correlating

f-functions. The neglect of off-diagonal spin-orbit matrix elements by Gropen et al.7

is hardly justifiable on the basis of the strong mixing of ΛΣ - states through the spin-

orbit interaction. We have therefore recalculated the spin-orbit splitting from their

results using the semi-empirical method of Rohlfing et al.4. The results obtained using

this semi-empirical method agree rather well with our CI results and indicate that

platinum retains much of its atomic character in PtH. This is in accordance with our

bonding model and justifies the assignment of the 5d3/2
4  5d5/2

5  σ1/2
2  and 5d3/2

3  5d5/2
6  σ1/2

2

electronic configuration for the three lower and two upper states of PtH respectively.

The electronic configurations invites a comparison with the d9s2 negative platinum ion

and indicates an analogy between the binding of an electron and of a hydrogen atom to

platinum. Squires49  has investigated the possible correlation of transition-metal electron

affinity EA(M) and the dissociation energy  D[M-H] of the corresponding transition

metal hydride. The study was motivated by the near constant gas-phase acidity ob-

served for these hydrides. Squires obtains an empirical formula linking the two above

quantities (D[M-H] = EA(M) + 1.19eV). The electron affinity of platinum is 2.13 eV

which is almost twice the corresponding value for nickel (1.16 eV)50 . The much larger
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value for platinum can be understood in terms of relativistic stabilisation of the 6s

orbital10 .  The unusual stability of the Pt-H bond may then be explained in an

analogous fashion.

The analogy between the PtH molecule and the Pt negative ion further suggests that the

spin-orbit parameter of the semi-empirical method used by Rohlfing et al.4  should be

derived from the fine structure splitting of the negative rather than the positive platinum

ion. Both the negative ion and the PtH molecule can be well represented with a single

configurational (d9s2 or d9σ2) wave function. In the positive ion the contribution of the

d8s configuration is non-negligible and decreases the spin-orbit coupling. The use of a

spin-orbit parameter that was derived from the Pt+ experimental splitting will thus

underestimate the splitting in the molecule. A better choice is to obtain the spin-orbit

parameter either from an experiment or calculation on the negative ion or from a

calculation on Pt+ that includes only the d9 configuration. Unfortunately the 2D5/2 –
2D3/2 splitting of the d9s2 negative platinum ion has not been experimentally

determined. The recommended value51  10000 (±1000) cm-1 obtained by isoelectronic

extrapolation gives a spin-orbit parameter A = 0.50 eV from the Landé interval rule.

Numerical calculations on the d9, d9s and d9s2 configurations of Pt+, Pt and Pt- give

values for A of 0.49, 0.50 and 0.47 eV respectively. We have used the latter value to

obtain spin-orbit splitted excitations energies from the preliminary all-electron

CASSCF-MRSDCI results of Gropen42 . The results are listed in table 9 and agree well

with our CI results.
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5.7. Conclusions

The electronic structure and bonding of the five lower states of the PtH molecule have

been investigated using fully relativistic CI based on DHF references. Spectroscopic

properties have been obtained by fitting of a Morse potential tending asymptotically to

the  Pt [J = 3 (5d9(2D5/2)6s1)] + H(6s1) and Pt [J =  (5d9(2D3/2)6s1)] + H(6s1)

energies for the three lower and two upper states respectively. At the DHF level the

effect of relativistic corrections (Gaunt interaction) to the Coulomb electron-electron

interaction has been evaluated and found to be hardly significant for the properties

mentioned above. At the CI level the wave functions are found to have only one

dominant configuration. This indicates a lack of static correlation and is quite contrary

to the results obtained for the platinum atom. Dynamic correlation in the d-shell is

important for the spectroscopic properties of PtH and the inclusion of correlating f-

functions in the basis appears to give considerable improvement of the results.

Our CI as well as DHF results  indicate that bonding is essentially the same in all five

states of PtH. The results are in accordance with a bonding scheme in which the

electronic configuration of the three lower and two upper states of PtH are assigned the

electronic configurations 5d3/2
4  5d5/2

5  σ1/2
2  and 5d3/2

3  5d5/2
6  σ1/2

2
 respectively. The

ground state of the PtH molecule is found to be an Ω=5/2 state strongly bound with a

De value of 2.98 eV and a bondlength of 1.52 Å. The assigned electronic

configurations suggest an analogy between the PtH molecule and the platinum d9s2

negative ion. The stability of the Pt-H bond may then be explained by the relativistic

stabilisation of the platinum 6s orbital. The strong atomic character of platinum in the

molecule may explain the success of more approximative approaches to the spin-orbit

splitted states of PtH. On the basis of the analogy with the negative Pt ion we

recommend the use of a spin-orbit parameter that is derived from the spin-orbit splitting

of the negative Pt ion in the semi-empirical approach used by Rohlfing et al.4.

The results show good agreement with experimental data and illustrate the value of 4-

component relativistic CI calculations to provide accurate benchmark results for

systems in which both relativistic and correlation effects are important.
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5.9. Appendix A: Hydrogen basis

The hydrogen basis used in the calculations was derived from a 6s1p primitive basis

and contracted to 3s1p. The basis is given in table A1.

Table A1. The hydrogen basis set.

Large components:

Exponents Contraction coefficients

s      79.99016053

     11.96435285

      2.72256964

       .77282765

       .25176829

       .08842324

       .00209389

       .01607826

       .07868258

       .26323087

       .49709674

       .28627156

      -.00976942

      -.07501606

      -.36710784

     -1.22815136

      2.45234858

     -1.33565187

      -.00289511

      -.02223054

      -.10879011

      -.36395498

      -.83562669

      1.43031543

p        .80000000       1.00000000

Small components:

Exponents Contraction coefficients

s        .80000000       1.00000000

p      79.99016053

     11.96435285

      2.72256964

       .77282765

       .25176829

       .08842324

       .03242534

       .09632089

       .22487392

       .40083334

       .43204906

       .14745373

      -.05733506

      -.17025340

      -.39743861

      -.70839556

      1.26704631

      -.26058929

       .00695649

       .02069124

       .04832367

       .08614912

     -1.13946020

      1.48212854

d        .80000000       1.00000000
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6. Relativistic and electron correlation effects on
the d-d spectrum of transition metal fluorides

6.1. Abstract

The electronic spectra of the transition metal complexes CoF62-, RhF62- and IrF62- that

occur in the solids Cs2MeF6 are calculated. Hartree-Fock and Dirac-Fock calculations

followed by non-relativistic and relativistic CI calculations respectively are used to

study the influence of relativity and electron correlation. The calculated transitions are

found to agree fairly well with experiment, the largest discrepancies arising from the

neglect of differential dynamical electron correlation effects.

6.2. Introduction.

Ab initio  computational methods based on the non-relativistic Schrödinger equation are

nowadays applied quite routinely to describe the electronic structure of 3d and 4d

transition metal complexes. In such calculations the main problem is to give an accurate

description of the large electron-electron correlation that is present in partly filled d-

shells. The most conspicuous errors that arise from the use of a non-relativistic theory

instead of a relativistic theory are caused by the neglect of spin-orbit coupling. This

deficiency can, however, in most cases be accounted for by the use of a perturbative

spin-orbit operator.

In 5d transition metal complexes relativity leads to significant changes in the electronic

wave functions compared to non-relativistically calculated wave functions. In these

systems relativistic corrections are no longer small and the use of perturbation theory

based on non-relativistically determined wave functions is more difficult. Methods that

use non-relativistically determined orbitals as a one-electron basis for (approximate)

relativistic Configuration Interaction (CI) calculations may need larger expansions to

converge than methods that include relativity from the outset.

In this work such a more rigorous approach is followed by employing a relativistic

formalism throughout. The basic equation that we use is the Dirac-Coulomb-Gaunt

equation that implicitly includes all one-electron relativistic effects and the magnetic

(Gaunt) correction to the Coulomb two-electron interaction. We use the Dirac-Fock

approach to obtain four-component spinors that are used to set up a determinantal CI

space for subsequent relativistic CI calculations. We can thus treat relativity and

electron correlation on an equal footing and study the influence and interplay of both on

the electronic spectra.
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This method has previously been applied to closed shell group IV hydrides1, a

lanthanide complex2 and recently to the PtH molecule3 (Chapter 5). We now study the

properties of the MeF62- complex ions of cobalt, rhodium and iridium as representative

examples of transition metal complexes across the periodic table. These ions were

chosen because experimental data (structures and electronic spectra) of all three ions are

available. Since the metal ions belong to the same column of the periodic table, they

have the same valence electron configurations which simplifies the comparison of the

results.

6.3. Theory

The Dirac-Fock-RASCI method and its implementation (the MOLFDIR program

package) is described in detail in the previous chapters. Here we mention only a few

points that are relevant for the present application.

In the RASCI formalism4 the spinor set is first divided in a core set, an active set and

an external or deleted set, after which the active set is further subdivided into three sets

(RAS1, RAS2, RAS3). By specifying a minimum number of electrons that has to

reside in RAS1 spinors and a maximum number of electrons that may be excited to the

RAS3 space, most conventional types of CI spaces can be defined.

In the case of the MeF62- ions the RAS1 set consists of the 36 fluorine 2p-like spinors,

the RAS2 set consists of the 10 open Me nd-like spinors, and the RAS3 set is formed

by the low-lying virtual spinors. A Complete Open Shell CI (COSCI) space is generally

defined2 as the set of determinants that fulfil the constraints that all RAS1 spinors have

occupation one, and all RAS3 spinors have occupation zero.

In the present application the COSCI method is equivalent to the well known Ligand

Field CI (LFCI) method. Complete diagonalisation of this small CI space is possible

and gives a set of intermediary coupled wave functions and a first estimate of the dd-

spectrum.

The LFCI reference space is extended in Charge Transfer CI (CTCI) calculations by

allowing single, double, triple, or higher excitations from RAS1 to RAS2. These

excitations mix low-lying charge-transfer (Me3+, Me2+, Me+) states into the LFCI

wave functions. The CTCI method treats the so-called static correlation effects that arise

from the low-lying charge-transfer states.

A third sophistication is possible by the relaxation of the obtained wave function by

means of single excitations from RAS1 and RAS2 to RAS3. The spinors that were

obtained by optimising the dnL36 configuration are not optimal for the dn+1L35 and

dn+2L34 charge-transfer configurations. This deficiency in the spinor basis may in first

order be corrected by the inclusion of all singly excited states from these

configurations. This type of CI is called First Order CI (FOCI).
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In the present application the treatment of dynamical correlation by means of inclusion

of double excitations into the RAS3 space is prohibited by the large size of the active

space.

6.4. Basis sets

Gaussian type basis sets were optimised to minimise the energy of the Me4+ d5

configurational average. Because no relativistic basis set optimisation program is

available at present, we used the non-relativistic code ASCF5 for this purpose. During

the optimisation process the d-exponents were constrained to be a subset of the s-

exponents. The advantage of applying these constraints on the d-exponents is that the

primitive basis for the small component p-functions, as obtained by kinetic balance, is

already contained in the small component functions that arise from the large component

s-functions. The f-exponents were similarly constrained to be a subset of the p-

exponents, to keep the number of small component d-functions as low as possible.

The non-relativistic exponent optimisation gives quite reasonable results apart from a

deficiency in the basis for the p1/2 spinors which lacks some steep basis functions. This

deficiency was remedied by adding one extra tight p function to the Rh basis and two

extra to the Ir basis. The exponents were determined by logarithmic extrapolation of the

original set of exponents.

Using these sets of primitive gaussians the atomic spinors of the Me4+ ions were

determined after which general contracted bases were formed6 consisting of all

occupied spinors. The valence region is described at triple-zeta level by leaving two

outer s-functions, one outer p-function and two outer d-functions uncontracted and by

adding extra s, p,  d and f diffuse functions. The uncontracted functions were

kinetically balanced, the contracted functions that were obtained from the occupied

spinors were atomically balanced.

To describe the fluorine ions we used Wachters7 primitive fluorine basis. The general

contraction was based on a calculation on the F- closed shell ion and the resulting triple-

zeta valence basis was extended with 1 d polarisation function.

The size of the basis sets is given in table 1. The primitive basis sets of all ions are

given in appendix 1. Contraction coefficients are available upon request.

Table 1. : Basis set sizes.

Co (17s,10p,7d,1f;  nrel. [6s,4p,4d,1f]

10s,17p,10d,7f,1g) rel. [6s,5p,4d,1f; 5s,9p,7d,5f,1g]

Rh (18s,14p,11d,1f; nrel [7s,5p,5d,1f]

14s,18p,14d,11f,1g) rel. [7s,8p,7d,1f; 5s,12p,9d,7f,1g]
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Ir (21s,15p,13d,7f; nrel. [8s,6p,6d,2f]

15s,21p,15d,13d,7g) rel. [8s,10p,9d,3f; 

6s,14p,12d,9f,3g]

F (10s,6p,1d; 6s,10p,6d,1f) nrel. [5s,4p,1d]

rel. [5s,4p,1d; 4s,5p,4d,1f]

6.5. Atomic calculations

To investigate the quality of the basis sets we have compared the differences between

the absolute energies at Hartree-Fock and at Dirac-Fock level calculated respectively

with the contracted basis sets and numerically with the program GRASP8. The basis set

Hartree-Fock calculations were done with the non-relativistic option of our program

package MOLFDIR, the numerical Hartree-Fock limit was obtained by multiplying the

speed of light with a value of 10000.

Although the absolute error in the relativistic energies is much larger than the absolute

error in the non-relativistic energies, the energy differences between the different

configurations are quite satisfactory and accurate to about 0.2 eV (table 2). To study

effect of basis set errors on the d-d spectrum we have performed COSCI calculations

based both on the numerical spinor set and on the basis set spinor set. If we compare

the relative energies of the states in the d5 manifold we find that the differences between

both calculations are small: maximally 26 meV (table 3).

Table 2. Energy differences (eV) between numerical and basis set Dirac-Fock

calculations on the dn averages (n=5,6,7). E = E (Basis set) - E(Numerical).

Non-Relativistic Relativistic

Co Rh Ir Co Rh Ir

∆E (Me4+) 0.22 0.56 2.98 0.44 1.79 32.27

∆E (Me3+) 0.26 0.54 3.00 0.47 1.78 32.28

∆E (Me2+) 0.39 0.53 3.05 0.61 1.76 32.32

Table 3. Energy differences (eV) between numerical and basis set COSCI calculation

on the Me4+ d5 average.

Non-Relativistic Relativistic

Co Rh Ir Co Rh Ir

Weighted average error. 0.007 0.013 0.004 0.008 0.009 0.002

Maximum error. 0.013 0.026 0.008 0.015 0.018 0.005
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In the optimisation of the Rh4+ energy two s- and d-functions ended up with almost the

same exponential parameter (0.4435 and 0.3888). Such a close spacing is not very

efficient and may give numerical inaccuracies in the molecular calculations. We

therefore substituted for the latter primitive function a function with exponent 0.1803

(obtained by logaritmic extrapolation). This explains the somewhat larger deviations

from the numerical results in the Rh4+ spectrum (table 3).

The tables show that the basis sets give a good description of the different oxidation

states of the metal ions, but they do not test the validity of the COSCI approach to

calculate accurate spectra. Comparison with experimental data is desirable but is

hampered by the scarcity of spectral data for the higher oxidation states of the metal

ions. Excitation energies for the 4+ ions are only available for cobalt. Comparison with

the Me2+ electronic spectrum is possible for both cobalt and rhodium (table 4).

Table 4. Relativistic COSCI spectrum of the Co4+, Co2+ and Rh2+ free ions. Energies

(eV) given relative to the ground state. Intramultiplet splittings (meV) are given in

parenthesis.

Co4+ Co2+ Rh2+

State Exp.9 COSCI State Exp.10 COSCI Exp.24 COSCI
6S5/2 0.00 0.00 4F9/2 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
4G11/2 4.61 (0) 5.21 (0) 4F7/2 0.10 (104) 0.10 (103) 0.27 (266) 0.26 (256)
4G9/2 4.62 (9) 5.21 (-1) 4F5/2 0.18 (180) 0.17 (179) 0.43 (432) 0.42 (424)
4G7/2 4.62 (9) 5.20 (-14) 4F3/2 0.23 (231) 0.23 (232) 0.54 (536) 0.53 (532)
4G5/2 4.63 (11) 5.21 (6) 4P3/2 1.88 (0) 2.41 (0) 1.36 (0) 1.85 (0)
4P3/2 5.05 (0) 5.99 (0) 4P5/2 1.91 (28) 2.44 (32) 1.37 (8) 1.85 (-2)
4P5/2 5.07 (17) 6.00 (16) 4P1/2 1.96 (76) 2.48 (78) 1.55 (183) 2.02 (170)
4P1/2 5.09 (34) 6.02 (36) 2G9/2 2.11 (0) 2.40 (0) 1.74 (0) 1.91 (0)
4D7/2 5.54 (0) 6.48 (0) 2G7/2 2.20 (98) 2.50 (99) 1.89 (150) 2.17 (256)
4D1/2 5.57 (25) 6.49 (14) 2H11/2 2.82 (0) 3.20 (0) 2.42 (0) 2.54 (0)
4D5/2 5.58 (34) 6.51 (35) 2H9/2 2.91 (89) 3.28 (82) 2.73 (250) 2.79 (250)
4D3/2 5.58 (34) 6.51 (30)
2I11/2 6.74 (0) 7.42 (0)
2I13/2 6.74 (5) 7.44 (16)

The relativistic COSCI method gives a good description of the intramultiplet spin-orbit

splittings, except for the very small splitting of the 4G excited state of Co4+ where it

reverses the order of the states. Note, however, that the main feature of d5 multiplets,

virtually vanishing spin-orbit splittings11 , is reproduced correctly. The method does not
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deal very well with the intermultiplet splittings. This failure is understandable because

at the COSCI level dynamic correlation effects are not accounted for. We may expect

the same kind of errors in the molecular calculations.

6.6. Cluster calculations

6.6.1. Introduction

In an ionic model we can describe transitional metal complexes as metal cations that are

coordinated by ligand anions. In the complexes studied here we find fourfold oxidised

metal ions with the configurations [Ar]3d5, [Kr]4d5 and [Xe]5d5 for Co4+, Rh4+ and

Ir4+ respectively. They are octahedrally coordinated by six fluorine anions. The lowest

transitions in the electronic spectra of the complexes originate from excitations within

the d5 manifold of the metal ion. The influence of the surrounding ions is in such a

approach accounted for by an electric field that lifts the degeneracy of the metal d-

orbitals. Many features of the electronic spectra can then be explained on basis of the

symmetry of the crystal field. An assumption that is usually made in Crystal Field

theory is that the radial character of the open shell d-like orbitals remains the same.

With this assumption the spectrum may be fitted by the use of only a few parameters

(10Dq, the Racah two-electron parameters B and C and optionally a spin-orbit

parameter ζ). This simple model can be refined12  by accounting for the radial difference

between eg and t2g orbitals but this adds seven more parameters which is in most cases

impractical considering the available experimental data.

The unrealistic high formal charge of the metal ions treated here gives, however,  rise to

difficulties with the interpretation of the electronic structure of the complexes in a

simple ionic model. Covalency will delocalise the ligand electrons and reduce the high

formal charge to a more realistic value. In a molecular orbital picture the bonding and

anti-bonding combinations of orbitals that are formed from the fluorine p-functions and

the metal d-functions in the t2g and eg representations give rise to charge transfer that

makes the metal ion less positive and the fluorines less negative. In contrast to the

electrostatic crystal field picture derived from the ionic model, the formation of covalent

bonds can now be considered to be the main source of the perturbing field, which led to

the development of Ligand Field theory. The covalent bonding will also introduce radial

differences between the eg and t2g open shell orbitals since they contribute to a different

type of bonding (σ and π respectively). These differences are again not taken into

account, however, so that the parametrisation given above is maintained.

A discussion of the validity of the underlying ideas from an ab initio point of view is

given by Vanquickenborne et al13 . In ab initio  calculations like the ones presented

here, the orbital differences are of course accounted for since the orbitals are determined
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variationally. This means that the interpretation of the parameters of the Ligand Field

model changes and direct comparison with experimentally derived parameters is

difficult. In the relativistic calculations the situation is even more complicated. We now

also have to consider the change in character of the orbitals under the influence of spin-

orbit coupling. We will therefore in general follow a straightforward approach and

compare the observed and calculated transitions directly. In some cases use of a Crystal

or Ligand Field model is, however, helpful for a qualitative analysis of the obtained

results.

6.6.2. Symmetry and configurations

The five d-orbitals of the central ion are divided in two representations (eg and t2g) in

the octahedral (Oh) point group. The eighteen fluorine p-orbitals span a number of

representations including eg and t2g (table 5).

In the relativistic calculations we will work with one-electron spinors. These functions

span the "extra" representations of the full rotational (O(3)*) or the octahedral (Oh*)

double group. For the free ions we find that the d-shell is split into a d3/2 and a d5/2

subshell while the fluorine p-shells are split into p1/2 and p3/2 subshells.

The d3/2 spinors span the u'g representation of Oh* while the d5/2 shell is split over its

e"g and u'g representations. These representations are of course also spanned if we

reverse the construction of molecular double group functions and make spinors as

products of the eg and t2g orbitals with α or β spin. We then see that the spinorbitals

constructed from the eg orbitals span the u'g representation, while the spinorbitals

constructed from the t2g orbitals span both the u'g and the e"g representation.

Table 5. Orbitals and spinors in different symmetry groups.

O(3) O(3)* Oh Oh*

Central Ion d d3/2, d5/2 eg, t2g e"g, 2*u'g
Ligands 6*p 6*p1/2, 6*p3/2 a1g, eg, t1g, t2g,

2*t1u, t2u

2*e'g, e"g, 3*u'g,

2*e'u, e"u, 3*u'u

In figure 1 the relations between the different (spin)orbitals are given. In following

discussions on the nature of the spinors and of the splittings we will sometimes loosely

speak of t2g (or eg) spinors. This should be read as : "The set of spinors that can be

formed from combinations of the eg (or t2g) orbitals  multiplied with an α or β spin

function".
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Figure 1. Relations between orbitals and spinors in different symmetry groups.
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6.6.3. Computational details

The splitting of the d-shell into 2 or 3 groups of spinors gives various ways of dividing

the 5 d electrons over the different representations. Optimising the energy of all states

arising from the possible configurations by separate SCF calculations is in principle

possible but is not feasible in practice. Such a procedure gives different spinor sets for

all different states, which means that subsequent CI calculations require separate 4-

index integral transformations for all states which would increase the computational

effort considerably. The interpretations of such results would furthermore be more

cumbersome because of the differences in spinor sets.

Our goal is to obtain one set of spinors that gives a reasonable description of all states.

The CI calculations are done (simultaneously) in this molecular spinor basis for all

states. To get a balanced description of all states we optimise our spinors for the

weighted average energy expression of all configurations that can be made by

distributing five electrons over the ten spinors that span the twofold degenerate e"g and

the two four-fold degenerate u'g representations. This averaged energy expression is

equivalent to the non-relativistic weighted average energy expression of the t2g)5-xeg)x

(x = 0, 1,.., 4) configurations.
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To check the sensitivity of the results to the choice of the spinor set we have done some

non-relativistic calculations on the 2T2g state of CoF62-. We studied the energy

differences introduced by the use of different one-electron spinor sets for wave

functions of different quality. We compare the set of spinors obtained by minimising

the energy average of the d5 configuration (set 1) with the set obtained by minimising

the (t2g5) 2T2g energy expression separately (set 2). Since the t2g5 configuration has a

small weight in the total average we expect these calculations to give maximum values

for the spinor relaxation energies that would arise in separate SCF calculations on the

various states.

Table 6. 2T2g energy expectation values calculated non-relativistically with different

spinor sets and CI spaces. The uncontracted basis without Co f and fluorine d functions

was used.

Wave functions E (Set 1) (a.u.) E (Set 2) (a.u.) Difference (eV)

Single determinant -1992.0945 -1992.1166 -0.60

LFCI -1992.1105 -1992.1291 -0.51

CTCI -1992.2005 -1992.2051 -0.13

In table 6 we see that the influence of the spinor set diminishes as the level of CI

increases. This can be explained by noting that the most important differences between

the two spinor sets can be written as rotations between the closed and open shell t2g

(and eg) spinors. In the CTCI calculations excitations from closed to open shell spinors

are allowed, hence the differences between the results obtained with the two spinor sets

get much smaller. The influence of the use of average spinors on the final results is

probably smaller than 0.1 eV since the other states will also have a  non-zero, negative,

relaxation energy.

Besides the use of one set of spinors for all states we had to use two other

approximations to make the calculations feasible.

The first concerns the level of excitation that is allowed in the Charge Transfer and First

Order CI calculations. The maximum excitation level for charge transfer excitations is

five, giving wave functions with a filled d-shell and five holes on the ligands. The

weights of such configurations in the CTCI or FOCI wave function are likely to be

small since the excitation energies involved are of the order of 3-5 eV per excitation

level. This assumption was studied by calculating (non-relativistically) the convergence

of the correlation energy of CoF62- with an increasing level of excitation in the Charge

Transfer CI (table 7). We see that  beyond the triple excitation level no significant

changes in the spectrum occur. In the subsequent calculations we have limited the

excitation level in the CTCI and FOCI to doubles. We also performed CTCI
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calculations that allowed triple excitations but found these to be insignificant for cases

other than CoF62.

Table 7. Contributions to CoF62- CTCI correlation energies (eV) with increasing level

of excitation. The uncontracted basis without Co f and fluorine d functions was used.

State Correlation Singles Doubles Triples Quadruples
2T2g -2.45 -0.63 -1.37 -0.44 -0.01
4T1g -2.11 -0.42 -1.36 -0.33 -0.01
4T2g -2.36 -0.50 -1.49 -0.36 -0.01
6A1g -1.17 -0.16 -0.80 -0.21 -0.01

The second approximation is based on an analysis of the density matrices of the CTCI

wave functions. Comparison of the density matrices from the LFCI and the CTCI wave

functions showed that the major changes occur in the bonding representations eg and

t2g (figure 2). The density arising from orbitals in the other representations hardly

changes, which indicates that excitations that involve these orbitals are not very

important. To make this assumption quantitative we performed a calculation in which

only the excitations from the eg and t2g spinors were allowed. This calculation gave a

reasonable estimate of the total correlation energies (table 8). We therefore restricted the

RAS1 spinor space to this set of bonding spinors in the final CTCI and FOCI

calculations. The RAS3 space was chosen to consist of a number of selected spinors

that was equal to the number of RAS1+RAS2 spinors to enable possible relaxation for

each occupied spinor. Use of all virtual spinors in the RAS3 space to allow more

complete relaxation of the wave functions would be desirable, but is not feasible for

this system since it would lead to very large sizes (>108) of the determinantal CI space.
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Figure 2. Diagonal elements of the differential (COSCI-LFCI) density matrices. CoF62-

at the non-relativistic level.
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Table 8. Correlation energies (eV) of CoF62- with different RAS1 spaces.

State All fluorine p's  eg and t2g Difference
2T2g -1.67 -1.54 0.13
4T1g -1.49 -1.38 0.12
4T2g -1.74 -1.53 0.21
6A1g -0.76 -0.71 0.05

The final expansion space that was used in the CI calculations consisted of 14 fluorine

p-like spinors in RAS1, 10 Metal d-like spinors in RAS2 and 24 virtual spinors. This

yielded a number of 13,482 determinants in the CTCI calculations and a number of

562,464 determinants in the FOCI calculation. By the use of abelian point group

symmetry is was possible to reduce these spaces to subspaces of at most 3,526 (CTCI)

and 140,626 (FOCI) determinants.

6.6.4. Crystal surroundings and cluster geometry

The MeF62- ions of cobalt, rhodium and iridium crystallise with a number of alkali

cations to form perovskite structures. The compounds have a  K2PtCl6 like structure in

which the MeF62- units are separated from each other by about 3.5 Å. The other ions

are found at distances slightly larger than 3 Å from the fluorine ions.
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Fig 3. Cs2MF6 lattice. Plotted is part of a unit cell, extended to show the octahedral

surrounding of the transition metal. Drawing is not on scale.
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Most experimental spectra available14,15,16 concern the cesium compounds and are

rather poorly resolved. In the case of IrF62- more precise values for some transitions

were obtained by Magnetic Circular Dichroism (MCD) experiments on Cs2GeF6, doped

with Cs2IrF617 .

To incorporate the effect of the surrounding ions on the spectra, we have described the

surroundings of the IrF62- cluster by fitting the Madelung potential of the host (after

subtraction of the cluster contributions) to a number of point charges. This fitted

potential was also used in the RhF62- calculations since no precise value of the lattice

parameter (a) of Cs2RhF6 was available. In the CoF62- calculations we fitted the cluster

corrected Madelung potential of the Cs2CoF6 lattice.

Both potentials vary slowly over the cluster (table 9) and lower the spinor energies but

do not dramatically influence the spectrum. Calculations on the bare clusters give

spectra that differed by less than 0.2 eV from spectra calculated with the embedded

cluster. Other than electrostatic effects from the surroundings are assumed to be small

and are not taken into account.

The fit charges and the accuracy of the fits can be found in appendix 2.
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Table 9. Potential at lattice sites (Volts).

Position Cs2CoF6 Cs2GeF6

Metal sites 9.25 9.00

Fluorine sites 8.81 8.51

Difference 0.44 0.48

The Me-F distance is not a fixed fraction of the basic lattice parameter (a). So

knowledge of this lattice parameter alone is not enough to determine the distances

within the MeF62- ion. Of the three compounds studied only the Cs2CoF6 structure is

completely determined experimentally. The Co-F distance was estimated to be 1.73

(±0.05) Å on the basis of X-ray crystallographic data18. Of the other two compounds

only the Cs-Me distances are known. Recently, however, EXAFS data of the K2RhF6

and K2IrF6 crystals19,20 were published that give precise values for the Rh-F and Ir-F

distance in these compounds. This distance is found to be 1.93 Å for both Rh-F and

Ir-F. Since we did not have these values at the start-up of our calculations we also

determined the distances by a geometry optimisation based on a 3 point parabolic fit of

LFCI data (table 10). These optimisations were carried out for clusters embedded in

potentials as described above. As optimum distance we took the equilibrium distance of

the lowest 2T2g (E"g) state.

For CoF62- the optimisation procedure gives a distance of 1.76 Å, which is within the

(wide) error range of the experimental distance. Miyoshi and Kashiwagi21  have done

non-relativistic SCF calculations on CoF62- ground state using embedded and bare

cluster models. Using the bare cluster model they found a distance of 1.79 Å. With

their most sophisticated model (which included the effect of the first two layers of

surrounding ions as point charges) they found a distance of 1.77 Å. These data show

that the potential energy curve is almost entirely determined by the intra-molecular

interaction within the isolated CoF62- complex and is not influenced much by the

surrounding ions.

The independence of the Me-F equilibrium distance on the surrounding ions implies

that the optimisation process should give values close to Rh-F and Ir-F distances in

K2RhF6 and K2IrF6. Comparing the calculated values in table 10 with the experimental

values we find differences of 0.02 Å. This is indeed the same order of accuracy as was

obtained for the Co-F distance. However, the calculated Rh-F distance is shorter than

the measured distance, while the calculated Ir-F distance is larger than the measured

distance. This indicates that the 2 pm accuracy reached by simple LFCI geometry

optimisations is somewhat fortuitous and may be less in other compounds.
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In the calculations presented in the next section we have used the experimental metal-

fluorine distances of 1.730 Å, 1.934 Å and 1.928 Å for cobalt, rhodium and iridium

respectively.

Table 10. Bondlengths (picometers) calculated at the LFCI level.

CoF62- RhF62- IrF62-

State non-

relat.

relat. dif. non-

relat.

relat. dif. non-

relat.

relat. dif.

2T2g (E"g) 177 176 -0.3 191 191 -0.6 196 195 -1.4
2T2g (U'g) 176 -0.2 190 -0.7 194 -1.6
4T1g (U'g) 179 179 -0.1 195 194 -0.9 201 198 -3.0
4T1g (E"g) 179 0.1 194 -1.0 198 -2.8
4T1g (U'g) 179 0.0 194 -0.8 198 -3.4
4T1g (E'g) 179 -0.1 194 -0.8 198 -3.4
4T2g (E'g) 179 179 -0.2 195 195 -0.5 201 198 -3.5
4T2g (U'g) 179 -0.2 195 -0.5 198 -3.2
4T2g (U'g) 179 -0.1 195 -0.4 198 -3.3
4T2g (E"g) 179 -0.2 195 -0.4 198 -3.5
6A1g (U'g) 181 181 -0.1 198 199 1.0 205 200 -5.6
6A1g (E"g) 181 -0.1 199 1.0 200 -5.5

Exp.29,30,31 173 (5) 193.4 (0.2) 192.8 (2)

6.6.5. Analysis of the spinor set

To get insight in the amount of covalency that is present in the complexes we have

analysed the individual valence eg and t2g spinors by means of the Mulliken population

analysis scheme22 . Since we used the same average of configuration energy expression

to optimise spinors for the clusters as for the bare metal ions, we can also compare the

calculated spinor energies to study trends in the spin-orbit splitting. The open and

closed shell spinor energies can, however, not be compared directly with each other

because the definition of the closed shell Fock operator differs from the one in that is

used for the open shell spinors. The shifts that are found in the open shell spinor

energies, going from Co to Ir, reflect the shifts found in the Me4+ bare ions.
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Table 11a : Energies and Mulliken population analysis of the highest closed shell eg

(u'g) spinors.

Energy (eV) % Me (d) % F (s) % F (p)

CoF62- (NR) -19.04 28.2 2.9 70

CoF62-  (R) -18.93 27.6 2.8 69.6

RhF62-  (NR) -18.40 26.6 2.4 70.9

RhF62-  (R) -18.24 25.2 2.3 72.1

IrF62-  (NR) -18.44 23.6 2.8 73.5

IrF62-  (R) -18.06 21.7 2.5 75.7

Table 11b : Energies and Mulliken population analysis of the open shell eg (u'g)

spinors.

Energy (eV) % Me (d) % F (s) % F (p)

CoF62- (NR) -18.26 74.3 0.6 25.1

CoF62-  (R) -18.14 75.0 0.6 24.4

RhF62-  (NR) -12.10 73.0 0.3 27.0

RhF62-  (R) -11.74 74.3 0.3 25.7

IrF62-  (NR) -9.09 74.6 -0.3 25.6

IrF62-  (R) -7.98 77.8 -0.5 22.5

Table 11c : Energies and Mulliken population analysis of the highest closed shell t2g

(e"g, u'g) spinors.

Energy (eV) % Me (d) % F (p) % F (d)

CoF62- (NR) -17.44 10.7 88.5 0.8

CoF62- (R,e"g) -17.37 10.3 88.9 0.8

CoF62- (R,u'g) -17.42 10.4 88.8 0.8

RhF62- (NR) -16.88 13.9 85.3 0.8

RhF62- (R,e"g) -16.76 12.8 86.4 0.7

RhF62- (R,u'g) -16.83 13.1 86.2 0.8

IrF62- (NR) -17.01 14.4 84.6 1.0

IrF62- (R,e"g) -16.76 10.9 88.1 1.0

IrF62- (R,u'g) -16.87 11.8 87.2 1.0
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Table 11d : Energies and Mulliken population analysis of the open shell t2g (e"g, u'g)

spinors.

Energy (eV) % Me (d) % F (p) % F (d)

CoF62- (NR) -21.98 90.9 8.9 0.2

CoF62- (R,e"g) -21.73 91.2 8.6 0.2

CoF62- (R,u'g) -21.86 91.1 8.7 0.2

RhF62- (NR) -15.84 87.2 12.4 0.4

RhF62- (R,e"g) -15.30 88.3 11.2 0.5

RhF62- (R,u'g) -15.57 87.8 11.7 0.4

IrF62- (NR) -13.40 86.0 13.9 0.2

IrF62- (R,e"g) -11.87 89.0 10.6 0.4

IrF62- (R,u'g) -12.69 87.4 12.3 0.3

From the population analysis (table 11) it is clear that the eg orbitals show more metal-

fluorine mixing than the t2g orbitals. This confirms the stronger covalency of the eg

orbitals due to their capacity of forming σ-bonds. The open and closed shell

populations are almost complementary which supports the molecular orbital picture that

is used in the Ligand Field model. The differences between the different compounds are

too small to permit interpretation in terms of changes in covalency.

The differences between the relativistic and the non-relativistic results may be explained

by considering the symmetry aspects of the bonding. In the relativistic case there are

two representations in which metal-fluorine d-p bonds may be formed. The u'g
representation is spanned twice by the metal d-functions which means that different

combinations can be formed depending on the strength of the spin-orbit coupling.

In the case of weak spin-orbit coupling and strong bonding the u'g spinors will be

combined into eg and t2g spinors and thus into σ and π-bonds as in the non-relativistic

case. Alternatively, in the case of a strong spin-orbit coupling at the central atom and

weak bonding, the functions will tend to localise and resemble the atomic double group

functions. The open shell u'g spinors will now be combined to form the d3/2 and four

of the d5/2 spinors. The e"g representation then contains the remaining two d5/2

spinors.

In other words: the construction of strong σ-bonds is accompanied by a relativistic

hybridisation energy that depends on the spin-orbit splitting of the d-shell. From the

spinor energies of table 11 we can see that the first case applies here. The relativistic

treatment splits the open shell t2g spinors into two groups but this splitting is much

smaller than the t2g-eg splitting. If we compare this splitting with the splitting within the

d-shell in the Me4+ ions , we find that the atomic splitting is reduced to 54% in CoF62-,
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52% in RhF62- and 54% in IrF62-. The figures are close to the value of 60% that is

obtained if pure t2g metal d-combinations are formed.

The decrease relative to this theoretical value gives information on the covalency of the

compounds. If we use a simple Crystal Field model23  to incorporate the effect of spin-

orbit coupling we find that values of 62, 64 and 68% for Co, Rh and Ir, respectively

might be expected. This model is based on the assumption that the open shell orbitals

consist of metal d-functions only. In practise the open shell spinors are, however,

partly spread out over the fluorines where a much smaller spin-orbit splitting (ζ2p =

0.05 eV) is found. This delocalisation effect counteracts the increase of the percentage

of the atomic splitting that would be expected from the increasing strength of the spin-

orbit coupling. Since the actual values remain fairly constant one can see that the

iridium complex is somewhat more covalent than the cobalt and rhodium complexes.

6.6.6. Configuration Interaction

The spinor sets presented above are used for various types of CI calculations that were

described above. In addition we have done some calculations on the specific configu-

rations t2g5-xex (x = 0, 1,.., 4). A theoretical value for the crystal field parameter 10Dq

was determined by the formula 10Dq = (E(t2g5) - E(t2g1eg4))/4.

Table 12. Average energies (eV) for the t2g5-xex (x = 0, 1,.., 4) configurations, relative

to the t2g5 average energy.

CoF62- RhF62- IrF62-

N-Rel. Rel. N-Rel. Rel. N-Rel. Rel.

t2g5 0.00 0.00 0.00 0.00 0.00 0.00

t2g4eg1 2.05 2.06 2.93 2.96 3.76 3.93

t2g3eg2 4.64 4.65 6.16 6.21 7.74 8.08

t2g2eg3 7.77 7.76 9.67 9.75 11.95 12.45

t2g1eg4 11.44 11.40 13.48 13.57 16.38 17.03

10Dq 2.86 2.85 3.37 3.39 4.10 4.26

10Dq (Experimental) 2.52 2.54 3.04

The calculated values for 10Dq can be compared with experimental fits and show a

rather large discrepancy. This may (partly) be explained by the invalidity of the simple

crystal field model in covalent ions. The experimental fit has been done on assignments

of states from the lower two configurations, since these are the only states that can be

indentified. The other transitions lie at higher energies where the much more intense
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charge transfer type excitations occur that obscure the weak (parity forbidden) d-d

transitions. Among the observed transitions at low energy there is none that can be

written in terms of only 10Dq. One always needs to fit the other ligand field parameters

B and C as well. In this fit the ratio between B and C is usually fixed which means that

a spectrum that in principle would need 12 parameters (the 10 Griffith parameters,

10Dq and ζ) is fitted with three free parameters. Calculation of B and C from our

results gave rather different results depending on the energy-differences that were

fitted. In CoF62-  for instance, the ratio C/B varied from 4.7 to 6.0 while in the

experimental fit a value of 4.9 was taken.

In order to calculate the splittings between the individual states one has to account for

the configurational mixing within the d-shell. This mixing is included in all (LF, CT,

FO) CI calculations that we have done.

In tables 13 a-c the results of these CI calculations are presented. We used the Coulomb

operator to represent the two-electron interaction, except in the second series of LFCI

(C+G) calculations in which the Coulomb-Gaunt operator was used. The column NR +

SO gives the results of a non-relativistic calculation in which the spin-orbit coupling

was accounted for in an approximate way. In the other non-relativistic columns we

have shifted the energies of the states by ζd. This allows for a better comparison with

the experimental and relativistic figures where the zero-point of energy is the 2T2g (E"g)

state instead of the weighted average of  2T2g (E"g) and 2T2g (U'g).

The energy lowerings and the thereby induced changes in the spectrum that are found

upon increasing the level of CI are most prominent for the CoF62- complex. A

multiconfigurational description is essential here, in order to obtain a correct  represen-

tation of the lowest states. In IrF62- the dominant changes occur if we go from a de-

scription without spin-orbit coupling to one were this effect is included. The lowest

states can thus be described by a simple LFCI wave function, provided that the spin-

orbit coupling is accounted for.
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Table 13a. CI results for the lowest states of CoF62-. Energies (eV) given relative to the 2T2g (E"g) state.

Intramultiplet splittings (eV) given in parentheses. Spin-orbit parameter 3d = 0.095 eV was used in the perturbative SOCI calculations.

Non-Relativistic NR + SO Relativistic

State Exp.26 LFCI CTCI FOCI Repr. SOCI LFCI(C) LFCI(C+G) CTCI FOCI

2T2g
0

--
0.10 0.10 0.10 E"g

U'g

0

0.15 (0.15)

0

0.14 (0.14)

0

0.14 (0.14)

0

0.14 (0.14)

0

0.14 (0.14)

4T1g 0.79 0.22 0.38 0.46

U'g
E"g

U'g
E'g

0.32 (0)

0.39 (0.07)

0.38 (0.07)

0.35 (0.02)

0.28 (0)

0.33 (0.05)

0.33 (0.05)

0.31 (0.02)

0.27 (0)

0.31 (0.04)

0.31 (0.04)

0.29 (0.02)

0.41 (0)

0.43 (0.02)

0.43 (0.02)

0.43 (0.03)

0.49 (0)

0.51 (0.02)

0.51 (0.02)

0.52 (0.03)

4T2g 1.28 1.19 1.21 1.27

E'g
U'g
U'g
E"g

1.26 (0)

1.27 (0.00)

1.31 (0.05)

1.33 (0.07)

1.25 (0)

1.25 (0.00)

1.26 (0.01)

1.26 (0.01)

1.24 (0)

1.24 (0.00)

1.25 (0.01)

1.26 (0.01)

1.22 (0)

1.22 (0.00)

1.24 (0.03)

1.26 (0.04)

1.28 (0)

1.28 (0.00)

1.31 (0.03)

1.32 (0.04)

6A1g > 0 -1.32 -0.50 -0.32 U'g
E"g

-1.24 (0)

-1.24 (0.00)

-1.29 (0)

-1.29 (0.00)

-1.29 (0)

-1.29 (0.00)

-0.53 (0)

-0.53 (0.00)

-0.35 (0)

-0.35 (0.00)

The absolute energies of the 2T2g (E"g) states in Hartrees are given below to make comparison of results possible. The energies contain a

constant (spurious) contribution from the interactions between the point charges of the fitted potentials of appendix 2. Note that the nuclei

in the clusters are represented by a gaussian charge distribution with exponent 0.256207E+9 for Co and 0.544946E+9 for F.

LFCI SOCI LFCI (C+G) CTCI FOCI

Non-Relativistic -1992.199236 -1992.206122 -- -1992.255795 -1992.270679

Relativistic -2003.456999 -- -2002.799990 -2003.509464 -2003.524783
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Table 13b. CI results for the lowest states of RhF62-. Energies (eV) given relative to the 2T2g (E"g) state.

Intramultiplet splittings (eV) given in parentheses. Spin-orbit parameter 4d = 0.209 eV was used in the perturbative SOCI calculations.

Non-Relativistic NR + SO Relativistic

State Exp.27 LFCI CTCI FOCI Repr. SOCI LFCI(C) LFCI(C+G) CTCI FOCI

2T2g
0

< 0.5
0.21 0.21 0.21 E"g

U'g

0

0.34 (0.34)

0

0.32 (0.32)

0

0.31 (0.31)

0

0.31 (0.31)

0

0.31 (0.31)

4T1g 1.44 1.70 1.81 1.80

U'g
E"g

U'g
E'g

1.57 (0)

1.62 (0.04)

1.82 (0.24)

1.87 (0.30)

1.58 (0)

1.62 (0.03)

1.76 (0.18)

1.80 (0.22)

1.59 (0)

1.62 (0.03)

1.75 (0.17)

1.79 (0.21)

1.72 (0)

1.76 (0.04)

1.85 (0.13)

1.89 (0.18)

1.71 (0)

1.74 (0.04)

1.84 (0.13)

1.88 (0.17)

4T2g 1.98 2.48 2.51 2.48

E'g
U'g
U'g
E"g

2.51 (0)

2.53 (0.02)

2.63 (0.12)

2.66 (0.15)

2.48 (0)

2.50 (0.01)

2.53 (0.05)

2.54 (0.06)

2.48 (0)

2.49 (0.01)

2.52 (0.05)

2.53 (0.06)

2.50 (0)

2.52 (0.02)

2.57 (0.07)

2.58 (0.08)

2.46 (0)

2.48 (0.01)

2.53 (0.06)

2.55 (0.08)

6A1g 1.98 2.39 2.39 U'g
E"g

2.23 (0)

2.25 (0.02)

2.12 (0)

2.13 (0.01)

2.10 (0)

2.11 (0.01)

2.43 (0)

2.44 (0.01)

2.43 (0)

2.44 (0.01)

The absolute energies of the 2T2g (E"g) states in Hartrees are given below to make comparison of results possible. The energies contain a

constant (spurious) contribution from the interactions between the point charges of the fitted potentials of appendix 2. Note that the nuclei

in the clusters are represented by a gaussian charge distribution with exponent 0.176688E+9 for Rh and 0.544946 E+9 for F.

LFCI SOCI LFCI (C+G) CTCI FOCI

Non-Relativistic -5296.886858 -5296.897584 -- -5296.920006 -5296.923705

Relativistic -5394.294470 -- -5390.801552 -5394.323816 -5394.327505
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Table 13c. CI results for the lowest states of IrF62-. Energies (eV) given relative to the 2T2g (E"g) state.

Intramultiplet splittings (eV) given in parentheses. Spin-orbit parameter 5d = 0.603 eV was used in the perturbative SOCI calculations.

Non-Relativistic NR + SO Relativistic

State Exp.28, 29 LFCI CTCI FOCI Repr. SOCI LFCI(C) LFCI(C+G) CTCI FOCI

2T2g
0.00

0.82
0.60 0.60 0.60 E"g

U'g

0

0.96 (0.96)

0

0.93 (0.93)

0

0.91 (0.91)

0

0.91 (0.91)

0

0.91 (0.91)

4T1g 2.45 2.99 3.06 3.05

U'g
E"g

U'g
E'g

2.84 (0)

3.07 (0.23)

3.39 (0.55)

3.56 (0.72)

2.71 (0)

2.98 (0.27)

3.19 (0.48)

3.34 (0.63)

2.72 (0)

2.97 (0.26)

3.18 (0.46)

3.32 (0.61)

2.77 (0)

3.03 (0.27)

3.22 (0.46)

3.37 (0.60)

2.76 (0)

3.03 (0.26)

3.21 (0.46)

3.36 (0.60)

4T2g 3.09 3.74 3.77 3.74

E'g
U'g
E"g

U'g

4.02 (0)

4.09 (0.07)

4.38 (0.36)

4.41 (0.39)

3.83 (0)

3.85 (0.02)

3.89 (0.06)

3.92 (0.08)

3.82 (0)

3.84 (0.02)

3.88 (0.06)

3.90 (0.08)

3.82 (0)

3.86 (0.04)

3.91 (0.09)

3.92 (0.10)

3.79 (0)

3.83 (0.04)

3.89 (0.10)

3.90 (0.11)

6A1g 4.19 4.21 4.20 U'g
E"g

5.05 (0)

5.05 (-0.01)

4.65 (0)

4.67 (0.03)

4.63 (0)

4.65 (0.02)

The absolute energies of the 2T2g (E"g) states in Hartrees are given below to make comparison of results possible. The energies contain a

constant (spurious) contribution from the interactions between the point charges of the fitted potentials of appendix 2. Note that the nuclei

in the clusters are represented by a gaussian charge distribution with exponent 0.116194E+9 for Ir and 0.544946 E+9 for F.

LFCI SOCI LFCI (C+G) CTCI FOCI

Non-Relativistic -17416.517161 -17416.553167 -- -17416.539945 -17416.544430

Relativistic -18456.812764 --  -18434.619602 -18456.829331 -18456.833325
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The calculated states of all three compounds can be described within an L-S coupling

scheme. The spin-orbit splitting of the lowest doublet and quartet states in IrF62- is

considerable but remains smaller than the inter-multiplet distances. The relativistic

treatment lowers the doublet state relative to the quartet and sextet states. This is caused

by interaction between the eg and the t2g (u'g) spinors. The spin-orbit coupling pushes

these two levels apart and thus lowers the energy of the t2g5 configuration relative to the

t2g5-xegx (x≠0) configurations.

The latter effect can also be modelled with a perturbative Ligand Field model for the

spin-orbit coupling. In this model we assume that the spin-orbit coupling matrix

elements between the 2T2g, 4T1g, 4T2g and 6A1g can be expressed in terms of the

atomic spin-orbit parameter ζd. This spin-orbit parameter is obtained from a

relativistical calculation on Me4+ by the relation ζd = 0.4 (ε(d3/2) - ε(d5/2)) with ε the

Dirac-Fock spinor energy. We add this spin-orbit coupling matrix24  to the diagonal

matrix given by the LFCI energies of these states and rediagonalise. The results show

good agreement with our relativistic LFCI results of CoF62- and RhF62-. The influence

of the spin-orbit coupling is overestimated, because covalency effects were neglected in

this model. In this simple model we furthermore neglected interaction with other d5

states which may also decrease the spin-orbit splitting of the higher multiplets.

The effect of the inclusion of the Gaunt operator in the hamiltonian was studied

perturbation wise at the LFCI level. We used the set of spinors that were determined at

the Dirac-Coulomb level and thus neglected the effect of the Gaunt operator on the form

of the spinors. The influence on the calculated splittings is small, giving as most

significant result a decrease of the IrF62- 2T2g spin-orbit splitting of 0.025 eV

6.7. Discussion

Experimentally all compounds are found to have a 2T2g low-spin ground state. Our

calculations confirm this assignment except for CoF62, where the 6A1g state is found to

be the lowest state. This discrepancy with experiment is probably due to the neglect of

dynamical electron correlation that also lead to the discrepancies with experiment in the

atomic calculations. The sextet state is described significantly better at the Hartree-

Fock-LFCI level than the doublet or quartet states, because the Pauli correlation is

incorporated whereas the Coulomb correlation is not, at this level of theory13 . Miyoshi

et al.25  have published non-relativistic calculations on this system that support this

assumption. In their LFCI calculations they find the 6A1g state lowest at 0.91 eV below

the 2T2g state. When they incorporate a semi-empirical correction for the atomic
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6. Relativistic and electron correlation effects on the d-d spectrum of transition metal fluorides

correlation energies, employing the method of Pueyo and Richardson26 , they find the
6A1g state 0.12 eV above the 2T2g state.

An additional source of errors in the CoF62- calculations is the uncertainty of 0.05 Å in

the used experimental bondlength. Variation of the bondlength with 0.02 Å gives rise to

variations in the calculated intermultiplet splittings of the order of 0.2 to 0.3 eV.

For the Rh and Ir fluorides we can not give an estimate of dynamical correlation effects

on basis of atomic results because no experimental spectra of Rh4+ and Ir4+ are

available. It is, however, likely that dynamical correlation effects will also influence the

spectrum of these compounds.

6.8. Conclusions

The excitation energies of the cobalt (IV), rhodium (IV) and iridium (IV) hexafluorides

can be fairly well described by First Order CI. The electron-electron interaction domi-

nates the spin-orbit coupling for all complexes, so the calculated states can be inter-

preted as (spin-orbit split) LS-coupled multiplets.

Calculated intermultiplet energy differences agree with experimental data to about

0.4 eV in CoF62- and to about 0.8 eV in IrF62-. For these energy differences, static

correlation effects that arise from low-lying charge transfer states are found to be most

important in CoF62-, while spin-orbit effects dominate in IrF62-. The discrepancies with

experiment can be explained by the influence of differential dynamic electron correlation

effects that are largely neglected at the level of theory that we use here.

The intramultiplet spin-orbit splittings are not much influenced by correlation

corrections. These splittings can be calculated to good accuracy in a Ligand Field CI

calculation. Use of a perturbative model to calculate the spin-orbit coupling is also

possible in these d5 ions and gives good results for the CoF62- and RhF62- ions, but

overestimates the splittings in the quartets of IrF62-.
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6.9. Appendix 1 : Basis sets

Table A1.1. Exponents of the primitive gaussian functions.

Cobalt Rhodium Iridium Fluorine
s 1084972.40 s 2731601.66 s 26668729.1 s 18648.5
s 162536.244 s 408859.481 s 3655468.76 s 2790.77
s 36991.6658 s 93307.3527 s 799486.001 s 633.258
s 10477.4164 s 26379.9304 s 223307.569 s 178.599
s 3418.40523 s 8563.26613 s 72755.3847 s 57.7896
s 1234.48863 s 3069.80285 s 26195.5709 s 20.4555
s 481.364201 s 1177.65743 s 10153.5021 s 7.58796
s 198.728746 s 472.694052 s 4066.33469 s 1.99213
s 20.7965155 sd 195.613241 sd 1660.71803 s 0.749854
s 0.145 sd 83.0173165 sd 695.762587 s 0.241845

sd 84.1211960 sd 35.8644033 sd 300.316974 p 63.1253
sd 25.1128635 sd 15.7285857 sd 131.207017 p 14.5012
sd 9.18340049 sd 6.92795231 sd 59.8738317 p 4.38233
sd 3.70926232 sd 3.01827958 sd 28.3242236 p 1.45355
sd 1.49235456 sd 1.19601332 sd 13.0883983 p 0.463237
sd 0.56778468 sd 0.44353579 sd 5.96839221 p 0.126578
sd 0.36051148 sd 0.18032814 sd 2.62206777 d 0.241845
p 2344.78030 sd 0.073 sd 1.06750738
p 555.647128 p 54250.6937 sd 0.4219794
p 178.863068 p 12847.3483 sd 0.13458954
p 67.1082327 p 3042.43775 sd 0.0429
p 27.3476842 p 986.433555 p 630825.605
p 11.6614996 p 375.207531 p 150637.678
p 4.77240079 p 157.689216 p 35971.4473
p 1.99067313 p 70.4823506 p 8589.78338

pf 0.79864849 p 32.7196868 p 2791.38561
p 0.32 p 14.6128764 p 1066.37478

p 6.75523649 p 446.084374
p 3.06574636 pf 161.628290
p 1.34905790 pf 58.0553565

pf 0.56425188 pf 25.2728514
p 0.236 pf 11.3439089

pf 4.89293799
pf 1.85277206
pf 0.78292625
p 0.27559172
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6.10. Appendix 2 : Fitted Madelung potentials

Table A2.1. Potential of the Cs2CoF6 lattice.

Atom Position in lattice

coordinates

Number of

equivalent

positions

Formal

Charge

Fit Charge Distance to

central Co

(Å)

Co (0.00, 0.00, 0.00) 1 4+ In cluster 0.0

F (0.20, 0.00, 0.00) 6 1- In cluster 1.73

Cs (0.25, 0.25, 0.25) 8 1+  0.9811 3.86

F (0.50, 0.30, 0.00) 24 1- -0.7679 5.22

Co (0.50, 0.50, 0.00) 12 4+  1.9598 6.30

F (0.80, 0.00, 0.00) 24 1-  1.1527 7.18

Cs (0.75, 0.25, 0.25) 24 1+ -0.7872 7.39

Table A2.2. Potential of the Cs2GeF6 lattice.

Atom Position in lattice

coordinates

Number of

equivalent

positions

Formal

Charge

Fit Charge Distance to

central Ge

(Å)

Ge (Rh, Ir) (0.00, 0.00, 0.00) 1 4+ In cluster 0.0

F (0.20, 0.00, 0.00) 6 1- In cluster

Cs (0.25, 0.25, 0.25) 8 1+  0.9811 3.91

F (0.50, 0.30, 0.00) 24 1- -0.7718 5.26

Ge (0.50, 0.50, 0.00) 12 4+  2.0358 6.38

F (0.80, 0.00, 0.00) 24 1-  1.1269 7.22

Cs (0.75, 0.25, 0.25) 24 1+ -0.8195 7.48

Table A2.3. Accuracy (V) of the point charge fits of the Madelung potential.

Crystal maximum error average error

Cs2CoF6 0.0025 0.00004

Cs2GeF6 0.0024 0.00004
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7. Summary and conclusions

7. Summary and conclusions

7.1. Summary

In this thesis we describe a method for relativistic quantum mechanical calculations

on molecules. We obtain relativistic zero order wave functions by the use of the

Dirac-Fock method and improve these by relativistic Configuration Interaction. This

opens the way for an accurate ab initio treatment of both relativity and electron

correlation in molecules or clusters that contain one or more heavy nuclei.

In the first chapters we describe the fundamental physical background of the method

that is based on the Dirac-Coulomb-(Gaunt) equation. Use of variational methods to

obtain the eigenvalues and eigenfunctions that correspond to the lowest electron states

is possible, even though the hamiltonian is unbound from below. Collapse into

"spurious" or positronlike states of lower energy is on the effective one-electron

Dirac-Fock level prevented by the use of kinetic or atomic balance. Use of the no-pair

approximation avoids problems with lower-lying states in the many-electron CI-

calculations.

The implementation of the method (MOLFDIR) is described in chapter 3. This set of

computer programs enables a thorough study of the properties of small molecules. Its

performance is dominated by the large numbers of two-electron integrals that arise

from the use of four-spinor one-electron functions. The range of possible applications

of the Dirac-Fock part is mainly determined by the total number of electrons that need

to be included in the calculation. The feasibility of CI calculations depends on the

number of active valence spinors and electrons. The limitations of both methods are

of a technical nature, we did not encounter any fundamental problems with the use of

the Dirac-Coulomb-Gaunt hamiltonian.

In chapter 5 we describe the PtH molecule. If ω-ω coupling is used (Hunds case c),

the bonding in this molecule can be clearly understood in a simple single

configurational model. Attempts to describe the bond in a non-relativistic Λ-Σ
coupling formalism (Hunds case a) give rise to large mixings between the states. Due

to the atomic nature of the spin-orbit splitting,  such approaches may, however, give

good results provided that the spin-orbit parameter that is used in a perturbation

treatment is chosen carefully. Accurate calculation of the bond length of this molecule

requires a good treatment of both relativity and electron correlation. Neglect or

approximate treatment of either one of them may give errors in the order of 0.05 Å.

Excitation energies are less sensitive to electron correlation but are strongly

influenced by the spin-orbit coupling.
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In chapter 6 we study the influence of relativity and electron correlation on the d-d

spectrum of CoF62-, RhF62- and IrF62-. The first peaks in the electronic spectrum of

these ions arise from interconfigurational transitions from the t2g5 2T2g ground state

to the  t2g4eg1 4T1g and 4T2g states. The effect of relativity is largest for the IrF62-

where the ground state is split by an amount of 0.91 eV. The calculated spin-orbit

splittings do not vary much with the level of CI that is used and agree well with

experiment. In all ions the LS-coupling scheme may still be used to assign the states

since the intermultiplet splittings are larger than the intramultiplet spin-orbit

splittings. The inclusion of charge transfer configurations in the wave functions

lowers the 2T2g ground state relative to the excited states. These charge transfer states

are most important in CoF62- , where a multiconfigurational description is essential

for the calculation of the excitation energies.

7.2. Conclusions

Relativity and electron correlation can now be treated on an equal footing using the

method and computer programs that are presented in this thesis. Both are found to be

important in the description of heavy transition metal complexes.

In addition to the use of a relativistic one-electron operator, relativistic corrections to

the Coulomb two-electron interaction operator may be included. The influence of the

largest of such corrections, the magnetic Gaunt interaction, is found to be insignifi-

cant for most molecular properties calculated.

The present implementation of the method is suitable for benchmark calculations on

relatively small molecules of general shape. Although the computational requirements

are still large, calculations may be done in a routine fashion. The modular set-up of

the computer program allows for an easy incorporation of new methods and

(technical) improvements of the existing algorithms.

In the transition metal compounds that were treated in this thesis, the most important

manifestation of relativity found is the large spin-orbit coupling in the 5d shell. The

thereby induced splittings in the electronic spectra are well described in both the

Dirac-Fock and the Dirac-Fock-CI method.

7.3. Suggestions for further research

The discussions in this thesis have focused on energy differences between electronic

states and on energy dependent quantities like bond lengths and harmonic

frequencies. The wave functions that are obtained from the calculations may,

however, also be used for calculation of electronic properties like dipole moments and

transition probabilities. This asks for the derivation of operators that can be used in a
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relativistic formalism and for the implementation of new algorithms to perform the

actual calculations.

Besides the use of direct Configuration Interaction one can apply most of the other

accurate methods that were developed to solve the Schrödinger equation to the Dirac

equation. The development of relativistic versions of methods like the Coupled

Cluster method, the Multi Configurational Self Consistent Field method and the

Density Functional method can give computer programs that are as accurate for

calculations on heavy elements as the present ab initio programs are for the lighter

atoms. The new relativistic algorithms may use Kramers' symmetry in order to reach

the same computational reductions as are obtained by the separation of spin and space

coordinates that is possible in the non-relativistic calculations.

Apart from these further technical developments, more research on the relativistic

corrections to the Coulomb interaction is desirable. The effect of the Gaunt

interaction can be studied more extensively than is done in this thesis and the effect of

the Breit retardation term and of other quantum electrodynamical corrections on

molecular properties should be investigated.
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Samenvatting

Samenvatting

Chemie is een molekulaire wetenschap. Kennis van de molekulaire struktuur van een stof

wordt gebruikt om haar chemische reakties en eigenschappen te verklaren. Deze struktuur

wordt meestal weergegeven met behulp van de atoomsymbolen, verbonden door streepjes

die de chemische bindingen aangeven. Hierbij gelden regels zoals de bekende oktetregel:

een atoom wordt altijd omgeven door 4 streepjes. Op deze wijze kunnen de meeste

(organische) molekulen goed worden weergegeven en geklassificeerd in klassen

(carbonzuren, alcoholen, aromaten , etc.) die op gelijksoortige wijze reageren.

Voor een grondiger begrip van chemische reakties, waarbij men de verschillen in

reaktiesnelheid tussen molekulen uit eenzelfde klasse wil verklaren of het mechanisme

van de reaktie wil begrijpen is dit model te simpel. Uitbreiding kan enerzijds gebeuren

door extra regels in te voeren op basis van experimentele informatie. Anderszijds is het

mogelijk om een stapje verder te gaan in de ontleding van de stof tot steeds kleinere

deeltjes. We beschouwen dan een atoom als een verzameling elektronen die in banen

rond de atoomkern bewegen. Chemische bindingen komen tot stand door de vorming van

molekulaire banen waarin elektronenparen gedeeld worden door verschillende atomen.

Door te berekenen voor welke samenstelling van atomen de elektronen de meest gunstige

(laagst energetische) banen bezetten is het mogelijk om de molekuulstruktuur en

reaktiemechanismen te begrijpen.

Anders dan de beweging van planeten rond de zon, kunnen elektronenbanen niet worden

beschreven met behulp van klassieke (Newtoniaanse) mechanica. De elektronen zijn

dusdanig klein en licht dat ze niet alleen als deeltje zijn te beschouwen maar ook

golfverschijnselen vertonen. Een ander belangrijk verschijnsel is de quantisatie van

energieniveaus: slechts bepaalde energieën zijn toegestaan zodat slechts een beperkt

aantal banen rond een atoom mogelijk is.

Dit gedrag wordt beschreven door de quantum mechanica. Door het oplossen van de

quantummechanische Schrödinger vergelijking kunnen elektronen golffunkties en daarbij

horende energiewaarden worden gevonden. Deze golffunkties bevatten alle informatie

over de beweging en distributie van de elektronen in een molekuul zodat molekulaire

eigenschappen als bijvoorbeeld het dipoolmoment kunnen worden bepaald. Door de

energieën van begin- en eindprodukten uit te rekenen kunnen reaktie-energieën worden

berekend. Om golffunkties en energieën te berekenen kan men experimentele informatie

als atomaire ionisatiepotentialen en electronaffiniteiten in de berekeningen verwerken.

Deze semi-empirische aanpak wordt meestal gecombineerd met een vereenvoudigde
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voorstelling van de Schrödinger vergelijking en golffunktie zodat de berekeningen

relatief eenvoudig blijven. Nadelen van deze methode zijn dat door het werken met een

vereenvoudigde vergelijking belangrijke effekten over het hoofd kunnen worden gezien

en dat voldoende accurate experimentele gegevens beschikbaar moeten zijn.

Dit laatste nadeel is niet aanwezig in een zogenaamde ab initio  aanpak. Hierbij wordt

getracht zo weinig mogelijk experimentele informatie in de berekeningen te verwerken.

De enige experimentele informatie die in deze aanpak noodzakelijk is betreft

fundamentele fysische konstanten zoals de massa en lading van elektronen en protonen en

de konstante van Planck. Berekeningen worden zo een numeriek experiment dat

onafhankelijk is van de beschikbaarheid en nauwkeurigheid van experimentele gegevens.

Dit maakt het mogelijk om bijvoorbeeld nog niet gesynthetiseerde verbindingen te

onderzoeken. Een nadeel van de aanpak is het grote aantal variabelen (de posities van alle

elektronen in de driedimensionale ruimte) dat voor komt in een molekulaire

Schrödingervergelijking. Door de electromagnetische wisselwerking tussen de elektronen

wordt de beweging van een elektron beïnvloed door de beweging van de hem omringende

elektronen: de elektronenbeweging is gecorreleerd. Hierdoor dient de beweging van alle

elektronen gelijktijdig te worden beschouwd. Mathematisch gezien blijkt dit uit de

onmogelijkheid om de molekulaire Schrödingervergelijking te reduceren tot een stelsel

van 1-electron vergelijkingen. Dit maakt het onmogelijk om langs analytische weg of via

standaard numerieke integratie technieken de golffunktie te bepalen.

Een andere weg moet dus worden gekozen als men in een ab initio  aanpak tot zo goed

mogelijk benaderde oplossingen wil komen. Meestal wordt hierbij begonnen met de

zogenaamde Hartree-Fock methode waarbij een eenvoudige vorm voor de golffunktie

wordt gekozen. Fysisch gezien wordt door deze keuze de expliciete elektron-elektron

interaktie vervangen door een gemiddeld elektrisch veld, waarin de elektronen

onafhankelijk van elkaar bewegen. De golffunkties die in deze benadering worden

verkregen dienen als basis voor meer geavanceerde methoden die het gebrek aan

correlatie in elektronen beweging compenseren. Een voorbeeld van zo'n methode is de

Configuratie Interaktie (CI) methode die in dit proefschrift wordt beschreven. Hoewel

deze "gecorreleerde" methoden in het algemeen zeer rekenintensief zijn is het

tegenwoordig mogelijk om berekeningen uit te voeren en quantitatief korrekte resultaten

te bereiken voor niet al te grote molekulen.

Als men ab initio  berekeningen wil doen voor molekulen die "zware" atomen bevatten,

d.w.z. atomen met hoge kernlading zoals bijvoorbeeld platina, goud of uranium, dienen

zich nieuwe problemen aan. De elektronen krijgen in het sterke elektrische veld van de

kern een  snelheid die in de buurt komt van de lichtsnelheid (300000000 m/s). Dit zorgt
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voor zogenaamde relativistische korrekties op de beweging die de golffunktie en energie

van de elektronen belangrijk veranderen. Om dit in rekening te brengen dient men een

vergelijking te nemen die zowel voldoet aan de eisen der quantum mechanica als aan de

eisen van de (speciale) relativiteitstheorie. Zo'n vergelijking is de in 1928 geponeerde

Dirac vergelijking. Behalve dat deze op natuurlijke wijze het voorkomen van het

intrinsieke magnetische moment van het elektron, de spin, bleek te beschrijven,

voorspelde zij ook het bestaan van het anti-elektron : het positron. Het bestaan van deze

anti-deeljes maakt het vinden van de laagst energetische elektronen golffunkties lastiger

daar ook positron golffunkties oplossingen zijn van de Dirac vergelijking. Een andere

complicatie is het feit dat deeltjesbehoud niet is gegarandeerd omdat een positron-

elektron paar kan worden gecreëerd onder toevoeging van een energie van 2mc2 (m:

massa van het elektron of positron,  c: de lichtsnelheid). In de chemie is dit laatste

verschijnsel echter van geen belang omdat chemische reaktie energieën in de orde van

enkele electronvolts liggen, hetgeen een miljoen maal kleiner is dan de paarcreatie

energie.

Met deze punten in het achterhoofd kan men nu de Diracvergelijking nemen als basis

voor relativistische ab initio  berekeningen. De golffunkties en energieën die gevonden

worden kunnen op dezelfde wijze worden gebruikt voor het bepalen van molekulaire

eigenschappen en spectra als de golffunkties en energieën die gevonden worden op basis

van de Schrödinger vergelijking. Om benaderde oplossingen te vinden worden methodes

gebruikt die analoog zijn aan de methodes die worden toegepast in niet-relativistische ab

initio  aanpakken. De rekentijd die nodig is om zulke oplossingen te vinden is echter een

orde groter (minimaal 16 maal) dan in de conventionele, niet relativistische aanpak. Dit

heeft lange tijd verhinderd dat een volledig relativistisch formalisme werd toegepast om

golffunkties te berekenen.

Veelal worden uitgaande van de Dirac vergelijking korrekties op de Schrödinger

vergelijking afgeleid, die dan kunnen worden gebruikt in een verder niet relativistisch

model. Het voordeel daarvan is dat conventionele algoritmen en computer

programmatuur kunnen worden gebruikt, een nadeel is dat de invloed van relativiteit

slechts gedeeltelijk wordt meegenomen. Het is daarom zinvol om de uitkomsten van deze

quasi-relativistische berekeningen te toetsen aan de resultaten van berekeningen in een

volledig relativistisch formalisme. Immers, pas als voor een klein maar representatief

testmolekuul beide typen berekeningen goede overeenstemming vertonen kunnen met

enig vertrouwen de benaderde, goedkopere, methoden worden gebruikt voor grotere

molekulen. Dit type calibratie berekeningen in een relativistisch formalisme was door de

benodigde rekeninspanning tot voor kort slechts mogelijk voor atomen. De komst van
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krachtige supercomputers in de laatste tien jaar maakt het nu echter in principe ook

mogelijk om molekulaire berekeningen te doen. De hiertoe benodigde algoritmen en

computerprogrammatuur zijn nog volop in ontwikkeling, maar op dit moment worden al

op enkele plaatsen in de wereld volledig relativistische berekeningen aan chemisch

interessante systemen gedaan.

In dit proefschrift wordt de zgn. Dirac-Fock-CI methode beschreven die het

relativistische analogon is van de bekende niet-relativistische Hartree-Fock-CI techniek.

De Dirac-Fock methode berust op een vereenvoudiging van de veel-deeltjes golffunktie

tot een antisymmetrisch produkt (determinant) van één-deeltjes funkties. Deze golffunktie

wordt later verfijnd door configuratie interaktie (CI) met andere determinanten, zodat de

correlatie tussen de elektronenbeweging in rekening wordt gebracht.

In hoofdstukken 1 en 2 worden de achtergronden van het onderzoek en de gebruikte

vergelijkingen beschreven. In hoofstuk 3 volgt een gedetailleerde beschrijving van het in

Groningen ontwikkelde MOLFDIR programma pakket, dat als eerste pakket ter wereld de

mogelijkheid biedt om molekulaire Dirac-Fock-CI berekeningen uit te voeren.

Om ingewikkelde golffunkties te beschrijven expandeert men deze vaak in een set van

eenvoudige exponentiële funkties, de zogenaamde basis set. Hoofdstuk 4 behandelt de

kinetische en atomaire balans procedure die noodzakelijk is om deze basis set expansie

techniek op een betrouwbare wijze  te kunnen toepassen in een vergelijking die zowel

elektronen als positronen beschrijft.

In hoofdstuk 5 wordt het molekuul platinahydride behandeld. Dit simple twee-atomige

molekuul is het eenvoudigst denkbare model voor de binding van waterstof aan platina

oppervlakken. Aangezien een goed begrip van deze binding belangrijk is om de

katalytische eigenschappen van platina te begrijpen, is veel onderzoek verricht aan dit

molekuul. De Dirac-Fock-CI berekeningen zijn in goede overeenstemming met

experimentele data en blijken bij uitstek geschikt om de de kwaliteit van de meer

benaderende  (goedkopere) berekeningen te bepalen.

In hoodstuk 6 worden berekeningen aan een groep van drie overgangsmetaal fluoriden

gepresenteerd. Door drie systemen met dezelfde valentie elektronenconfiguratie, maar

met een verschillend centraal ion te nemen, is het belang van relativistische en

elektronencorrelatie effekten in verschillende rijen van het periodiek systeem bestudeerd

en vergeleken.

Een algemene conclusie is dat vooral de zogenaamde spinbaankoppelingseffekten goed

worden beschreven met de in dit proefschrift beschreven aanpak. Voor de systemen die

hier behandeld zijn blijken electronencorrelatie en relativistische effekten elkaar weinig te

beïnvloeden.
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Appendix. Evaluation of CI coupling constants

The coupling constants γij
IJ = < I | Eij | J>  that were introduced in equation 37 of chapter

3, may be calculated using the graphical representation of the CI space1. A description

of the method for non-symmetry adapted graphs will be given first, after which the

evaluation of coupling constants in symmetry adapted CI spaces is considered. Finally

the separation of external space2 in CI-SD calculations is discussed.

A.1. Coupling coefficients in non-symmetry adapted graphs

Non-zero one-electron coupling coefficients

connect two determinants that differ by at most

one spinor. In the graphical representation of

the CI space this difference in spinor

occupation looks like a loop in the graph.

Figure 1 gives an example of such a loop in the

(6 spinor, 3 electron) Full CI space that was

given in figure 1 of chapter 2.
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Figure 1. Loop formed by the determinants

|236| and |356| in a (6 spinor, 3 electron) space.

We can subdivide the figure, that is indicated

by two different paths, into three parts. A head

part in which both paths overlap, the loop part

where the paths separate, run parallel and

finally meet again, and a tail part in which the

paths again overlap. The value of the coupling

coefficients is solely determined  (Slater's rule) by the number of simultaneously

occupied spinors (nLoop) in the loop part of the diagram

 γij
IJ = -1 nLoop (1)

In the example that is given in figure 1, this number is 1 since we have one set of

diagonal arcs: (2,0)→(3,1) and (2,1)→(3,2). The value of the coupling coefficient is

therefore (-1)1 = -1. From inspection of the diagram one may also find the values for i,
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j, I and J for this loop. I and J are the sums of arc weights of the paths, i and j are the

arcs where the paths separate and reunite again.  In the example we obtain

I=13, J=19, i=2 and j=5, or  I=19, J=13, i=5 and j=2, depending on whether we

take the upper part of the loop as belonging to I or the lower part, respectively.

The information contained in the diagram is used in the calculation of the sigma vector

(chapter 3, formula 47).  In the example we find for instance that the one-electron

integral g25 has to be multiplied with CI coefficient 19 to contribute to sigma vector

element 13.

Using the diagrams to evaluate the coupling coefficients individually is, however, not

very efficient. The great

strength of the method is the

possibility of simultaneous

evaluation of large groups of

coupling coefficients.Head

Tail

Upper

Lower

i -1

j -1

(i-1, nHead)

(j, nTail)

0 n

i

j

nHead nTail

0

m

We can write pairs that are

connected by coupling

coefficients with the same

value of i and j, schematically

as indicated in figure 2.

Figure 2. Representation of

loops in a graph.

The wiggly lines stand for all

possible paths that may

connect the begin and end

vertex of the line. This means that given a certain combination of i and j we may

calculate the whole range of values of I and J for which γij
IJ is non-zero simultaneously.

If we take i < j then the indices I and J are given by 1 + YHead + YTail + YUpper and 1 +

YHead + YTail + YLower, respectively. The value of the coupling coefficient is easily

calculated as the difference between the  number of electrons as (-1)nLoop, with

nLoop =  n Tail -  n Head -1.

To get all  coupling coefficients we now have to vary nHead and nTail such that all

possible combinations of vertices (i-1, nHead) and (j, n-nTail) are considered. This

results in a list of values for γij
IJ and addresses (indices) I and J that can be used directly

in the CI code.
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To make the amount of data that has to be handled as small as possible the factorisation

of the addresses into three parts that was described above is used. For each ij

combination one needs a list of possible vertex pairs  {(i-1, nHead)-(j, nTail)} and the

sign of the coupling coefficient for this vertex pair. For each vertex pair one than has a

list of combinations {YLower, Yupper} and a list of contributions {YTail}. It is easily

verified that the contributions to the index coming from YHead are numbered

consecutively from 0 to W(i-1, nHead)-1, so this range can be represented by a single

number.

To illustrate the procedure we take the calculation of the non-zero coupling coefficients

with i=2 and j=5 for the diagram given in figure 1. We see that the vertex combinations

(1,0)-(5,2), (1,0)-(5,3), (1,1)-(5,2) and (1,1)-(5,3) give possible loops. The coupling

coefficients that arise from these vertices are given in table 1.

Table 1. Breakdown of coupling coefficients in parts.

i=2,  j=5 (1,0)-(5,2) (1,0)-(5,3) (1,1)-(5,2) (1,1)-(5,3)

Sign γ -1 1 1 -1

YHead 0 0 0 0

YUpper 2, 4 3 0 0, 1

YLower 8, 9 9 6 5, 7

YTail 10 0 10 0

Sign γ -1 1 1 -1

YI 13, 15 4 11 1, 2

YJ 19, 20 10 17 6, 8

We get 6 non-zero coupling coefficients, that are represented by 24 numbers (Signs and

the partial Y-values). In this case representation by the summed numbers as is done in

the last three lines would be more advantageous since it gives only 16 numbers. One

can easily imagine, however, that in larger spaces the former representation becomes

more favourable.

A.2. Coupling coefficients in symmetry adapted graphs.

In symmetry adapted graphs the evaluation of the coupling coefficients can be done

analogous to the way it is done in the non-symmetry adapted case. A difference is the

representation of the YTail part. We have to consider the case that the spinors i and j

belong to different representations. This means that Eij connects determinants that

belong to different symmetry representations. The paths that represent these

determinants hence end in different vertices. Graphically this is seen in the fact that the

paths no longer join at the Tail vertex (Figure 3). This implies that although the
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occupation of their Tail parts is identical we obtain different contributions to their index.

In the example shown in figure 3, we find that I has index 6 in representation Γ1 while

J has index 5 in representation Γ3. YTail is now different, which means that we need an

additional number to represent I-J pairs.
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Figure 3. Loops in symmetry-adapted graphs.

We can use the symmetry-adapted graph to specify the representation that we want to

calculate coupling coefficients for. If we do a CI calculation on a number of states that

belong to representation Γλ than we only need coupling coefficients γij
IJ  with either I or

J belonging to representation  Γλ. This reduces the number of coupling coefficients that

we have to calculate.

For example, if we specify the constraint that J belong to Γ5 for the excitation E25 of

the example of the previous paragraph, we find that the only vertex combination that

remains is the (1, 1, Γ4) - (5, 3, Γ5) combination. The other possible vertex

combinations can either not be connected to each other, the Head vertex can not be

reached from the (0, 0, Γ1) vertex or the Tail vertex can not be connected to the

(6,  3,  Γ5) vertex. The number of coupling coefficients is now two, a reduction of the

original number with a factor of three.
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A.3. Separation of external space

In singles and doubles type CI-calculations the spinor space is divided into basically

two sets, an internal space consisting of a small number of spinors that is almost

completely occupied and an external space consisting of a large number of virtual

spinors that is occupied by at most 2 electrons. In the RASCI formalism this

corresponds to a large RAS3 space and a maximum excitation level nE3 = 2.

These constraints give rise to a simple form of the diagram in the RAS3 part. The

possible loops that may be formed in this space are simple, since only two diagonal

arcs may be occupied. We can especially use this simplicity to evaluate the coupling

coefficients in the case of two-electrons integrals (ij | kl ) with 3 or more external

indices. This class is the most abundant one in these type of CI calculations, so

reduction in the number and evaluation time of the coupling coefficients will give

important reductions in the CPU-time involved with the calculation.
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As an example we take the case in which

j > i > k > l, with i, j, k ∈ RAS3. In

the second quantised hamiltonian this

integral is connected to the double

excitation EijEkl. In the expression for

the sigma vector (chapter 3, formula 46)

we operate first with Ekl on a determinant

|J> to obtain determinant |K>, after

which we operate with Eij on |K> to

obtain determinant |I>. We can now

simplify the calculation of the coupling

coefficients γij
IK that are connected with

the second excitation, Eij. Since k

belongs to RAS3 we know that the

determinants |I> and |K> have a fixed,

occupied arc in the RAS3 part of the

diagram. The other arcs are determined

by the restriction that i must be occupied

in I and that j must be occupied in |K>.

This means that only one single loop is

possible. The situation is sketched in

figure 4 for the integral (6 11 | 2 x), with

x representing an arbitrary spinor in

RAS1 or RAS2.

Figure 4. Separation of external space. Only the external part of the diagram is drawn.
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The coupling coefficients  γij
IK that are needed by the evaluation of integrals with 3 or 4

external spinors hence can be evaluated with a few operations and need not be fetched

from computer memory or disk. Their number is also reduced relative to the complete

set of one-electron coupling coefficients since we used the constraint that spinor k was

occupied.

In the symmetry adapted graphs one can also use this technique. The diagrams and

formulas are a little more complicated but no fundamental difficulties arise.
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