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In tro duction

At his �rst lecture on quantum mechanics in Michaelmas term 1945,
Dir ac entered the room to �nd it jammed with students. He obviously
did not expect to see so many students at his lecture because he an-
nounced 'This is a lecture on quantum mechanics.' No one moved. He
repeated the announcement. Nothing happened again.

S.SHANMUGADHASAN (1987) [2]

0.1 General overview

Eventhough P. A. M. Dirac, the originator of the relativistic waveequation for the electron,
stated that relativistic e�ects were[3]

of no importance in the consideration of atomic and molecular structure and
ordinary chemical reactions,

it has becomeincreasingly clear during the past few decadesthat in many areasof chem-
istry such e�ects may not be neglected[4, 5]. Discussionsof relativistic e�ects are now
entering basic chemistry textb ooks [6], and there is a rapidly expanding literature on
the subject [7, 8, ?]. This acknowledgement stems largely from the extensive progress
in the development of methods and technology which has made chemical systems con-
taining heavy element atoms accessiblefor computational studies. It is found that the
non-relativistic Schr•odinger-equation fails to give an adequate description of such sys-
tems. A well known example is the relativistic e�ects on the band structure of metallic
gold[9, 5]. Non-relativistic calculations overestimatesthe gap betweenthe 5d and 6sband
and predicts absorption in the UV region, which would give gold an appearancesimiliar
to that of silver. In atoms, relativit y generally leads to a contraction of s and p orbitals
and (indirectly) to an expansionof d and f orbitals. In addition the spin-orbit coupling
causesthe �ne structure of atomic spectra. The e�ect of relativit y in molecular systems
is more uncertain and is currently an area of active research. The interest in the e�ects
of relativit y sparked in 1992 the establishment of the programme "Relativistic E�ects
in Heavy Element Chemistry and Physics"(REHE), sponsoredby the European Science
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Foundation [10]. The goal of this programmeis to spur interest and facilitate cooperation
among European scientists in the �eld.

The starting point of relativistic molecular calculations is the one-electronDirac oper-
ator in the external �eld of �xed nuclei [11, 12, 13]. The two-electroninteraction is usually
represented by the standard Coulomb interaction. This operator is clearly not Lorentz
invariant, but may be consideredas the zero-order term in a seriesexpansionof the full
two-electron interaction, which is not available in closedform. First order correctionsmay
be added in the form of the Gaunt or Breit terms. The e�ect of these corrections on
molecular properties is not very well understood, but they appear to be small. The re-
sulting Dirac-Coulomb(-Gaunt/Breit) Hamiltonian leadsto a considerableincreasein the
computational e�ort as compared to the corresponding non-relativistic electronic Hamil-
tonian. This is due to the fact that that the Dirac operator contains spin and leads to
a 4-component rather than scalar wave function. In addition the wave function can gen-
erally not be chosenreal, thus forcing the useof complex algebra. Consequently, several
approximativ e approacheshave beeninvestigated. Theseapproachesare usually basedon
a transformation of the Dirac operator to a truncated two-component form and a sub-
sequent separation of spin-free and spin-dependent terms [14]. The spin-free terms (e.g.
the spin free no pair Douglas-Kroll operator [15]) are straightforwardly incorporated in
conventional methods and codes,whereasspin-dependent terms may be added at a latter
stage in the calculations, as in spin-orbit CI[16] Another possibility is to use the Dirac-
Coulomb Hamiltonian or quasi-relativistic operators to generaterelativistic e�ectiv e core
potentials(RECP) [17, 18, 19, 20].

During the past 15 years several 4-component molecular Dirac-Fock codes have been
developed[21, 22, 13, 23, 24, 25]. The �rst basis set calculations were a wed due to the
disregardof the coupling betweenthe large and small components which must be reected
in any basis set expansion[26, 27]. Also, there has beenconsiderableconfusion over the
variational foundation of the method[11, 28]. The Dirac-Coulomb Hamiltonian generates
both positron and electron solutions, sothat the electronic ground state is an excited state
in its spectrum. Thereforethe minimalization of the corresponding non-relativistic method
must be replacedby a minimax principle. Convergenceis straightforwardly obtained by
vector selection,but may be more rigorously procured by secondorder methods.

The one-particle basisgeneratedby the Dirac-Fock method may be employed in cor-
related methods to obtain more accurate results. Implementations of the secondorder
M�ller-Plesset(MP2) [29, 30], the multi-reference Con�guration Interaction (CI) [22, 31]
and coupled-clustersinglesand doubles (CCSD) [32] methods have beenreported. Also,
work is in progresson the development of a 4-component molecular Multi-Con�gurational
Self-Consistent Field (MCSCF) code[33], aspresented in this thesis. Relativit y hasfurther-
more beenapproached by meansof density functional theory [34]. Sincerelativistic e�ects
arepredominantly found in systemscontaining heavy elements with a largenumber of elec-
trons in the valenceregion, the e�ects of dynamic correlation may be pronounced. Static
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correlation reects the need for a multicon�gurational wave function in near-degeneracy
situations, such asbond-breaking. In relativistic systemssuch a situation becomespartic-
ularly critical due to the additional near degeneraciesprovided by the spin-orbit coupling
[16]. In fact, the breaking of spin symmetry by the spin-orbit coupling generally makesa
multicon�gurational approach mandatory for systemswith more than oneopen shell [33].

The motivation for the development of molecular 4-component methods is manifold.
The study of relativistic e�ects has already beenmentioned. The prime motivation, how-
ever, is to obtain computational tools that allow an adequatedescription of chemical sys-
tems in which such e�ects are important. In addition, 4-component calculations serve as
benchmarks for the quasirelativistic methodsand probetheir rangeof validit y. In addition,
the 4-component methods are particularly well suited for studies of electric and magnetic
properties of molecules,due to the simple structure of operators. As an exampleone may
considernuclear spin-spin coupling, where four operators in the non-relativistic formalism
(Fermi contact, spin-dipole, paramagnetic spin-orbit and diamagnetic spin-orbit) are re-
placedby oneoperator in the 4-component formalism [35]. At present, the computational
intensity of the 4-component methods to someextent limits feasibleapplications. On the
other hand, this has lead to intensive work on the computational methods, work which in
the end may bene�t non-relativistic methods as well.

0.2 Layout of the thesis

The thesis presented here focuseson the methodological aspects of relativistic molecular
calculations. In particular, it presents the formalism for

� the quaternion Dirac-Fock equations

� the direct 4-component Dirac-Fock method

� the multi-con�gurational self-consistent �eld (MCSCF) method

Applications are represented by

� 4-component con�guration interaction (CI) studies of the �v e lower states of PtH

� 4-component direct SCF studies of bonding in hydrides of iodine, astatine and eka-
astatine (element 117)

� 4-component direct SCF studiesof bonding in dihydrides of tellurium, polonium and
eka-polonium (element 116)

Methodological development dependson a clear understanding of both the mathematical
structure and the physical content of the theory to be implemented. This has been a
decisive factor in the layout of this thesis.
The thesis consistsof three parts.
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1. In the �rst part I give an extensive, but not comprehensive, introduction to the
�eld of relativistic quantum mechanics. I have tried to bring out the mathemati-
cal structure and physical implications of the Dirac equation and its approximativ e
many-electron extension, the Dirac-Coulomb Hamiltonian. The presentation is in-
terspersedwith someof my own research material, whereI have felt that it elucidates
the presentation. I have also tried to avoid excessive overlap with the papers of the
secondpart, which meansthat the two parts should be read as a whole.

2. In the secondpart �v e papers are presented.

3. I have furthermore included several appendices:

� documentation of the 4-component direct SCF program DIRA C

� details on the reduction of the Breit term to two-component form

� background material on symmetry in relativistic systems

� diagonalization of quaternion Hermitian matrices

� tabulation and visualization of the angular part of atomic 2-spinors

Notation: I useatomic units throughout, but write electron massm and the speedof light
c out explicitly .
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Relativistic Quan tum Mec hanics





Chapter 1

One-electron systems

There was a young lady named Bright
Whose speed was far faster than light
She set o� one day
In a relative way
And returned home the previous night

A. H. R. BULLER [36]

The main objectiveof this chapter is to obtain a Lorentz invariant description of an electron
in a molecular �eld, that is the �eld of nuclei. We outline central features of the theory
of special relativit y and consider the transition from classicalto quantum mechanics. We
present the Dirac equation and discussits mathematical structure and physical content.
The two quantities are inextricably connected:

1. The transition from classical to quantum mechanics usually proceedsby way of
analogy. Spin has no classicalanalogue,but appears explicitly in the Dirac equa-
tion. The spin is coupled to the spatial degreesof freedom, and this has profound
consequencesfor the symmetry properties of solutions to the Dirac equation. The
solutions are fermion functions and changesign under a rotation 2� . This feature is
usually accounted for by the introduction of double groups. The behaviour of inver-
sion in double group theory is deducedon the basisof classicalanalogies. We shall
demonstrate that by deriving an explicit representation of inversion in spin space,
we arrive at a contradictory result.

2. The coupling of spin and spatial degreesof freedom meansthat the spin symmetry
of non-relativistic theory is lost. In the absenceof external magnetic �elds, however,
the spin symmetry can to someextent be replacedby time reversal symmetry. We
demonstrate that time reversal symmetry yields a quaternion formulation of the
Dirac equation.
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3. The charge conjugation symmetry of the free particle Dirac equation reveals its
many-body aspect in that it describes both the electron and its antiparticle, the
positron. A proper decription of an electron in an external �eld can only be obtained
within the framework of quantum electrodynamics (QED).

Further information of the physical contents of the Dirac equation is obtained by
considering perturbation expansionsin terms of the �ne structure constant � . This is
also the way to quasirelativistic one- and two-component Hamiltonians. We discussthe
di�culties involved in their derivation, namely the risk of introducing unboundedand/or
highly singular operators.
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1.1 Special relativit y

You are rowing a boat upstream. The river ows at three miles per hour;
your speed against the currents is four and one-quarter. You lose your
hat on the water. Forty-�ve minutes later you realize it is missing and
execute the instantaneous, acceleration-fr ee about-face that such puzzles
depend on. How long does it take to row back to your owing hat?1

JAMES GLEICK (1992) [37]

The theory of special relativit y is "special" becauseit only considersthe transformation of
space-and time coordinates betweeninertial frames,that is coordinate systemsin uniform
relative motion. The principle of relativity, however, predates the theory set forward in
1905[38] by Alb ert Einstein, technical expert third classat the patent o�ce in Bern, and
states that [39]

The laws of physics take the sameform in all inertial frames.

Implicit in this postulate is the assumptionof homogeneity of spaceand time and isotropy
of space. Considerationsof the structure of time and spaceform a powerful tool for the
elucidation of the laws of physicsand their mathematical formulation , as is demonstrated
in section 1.2 and 1.4. The principle of relativit y was originally connectedto the notion
of absolute time as embodied in the Galilean transformation

r 0 = r � v t

t0 = t
(1.1)

relating coordinates of inertial framesK 0 and K, having the sameorientation of axes,and
where K0 moves with uniform velocity v relative to K. In the theory of special relativit y
the idea of absolute time is replacedby the postulate [39]:

In any given inertial frame, the velocity of light c is the samewhether the light
be emitted by a body at rest or by a body in uniform motion.

This postulate leadsdirectly to the Lorentz transformation, as follows: The speedof light,
as measuredin inertial framesK and K 0, shall have the samevalue

jr 0
2 � r 0

1j
t0
2 � t0

1
= c;

jr 2 � r 1j
t2 � t1

= c (1.2)

1"A simpler problem than most. Given a few minutes, the algebra is routine. But a student whose
head starts �lling with 3s and 41

4 s, adding them or subtracting them, has already lost. This is a problem
about referenceframes. The riv er's motion is irrelevant | as irrelevant as the earth's motion through the
solar system or the solar system's motion through the galaxy. In fact all the velocities are just so much
foliage. Ignore them, place your point of referenceat the oating hat | think of yourself oating lik e the
hat, the water motionless about you, the banks an irrelevant blur | now watch the boat, and you seeat
once [. . . ] that it will return in the same fort y-�v e minutes it spent rowing away." [37]
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By simple rearrangement we �nd that the quadratic form

s2
12 = (r 2 � r 1)2 � c2t2 =

�
r 0

2 � r 0
1

� 2 � c2t02 (1.3)

is identically zero in both coordinate systems. From the assumption of homogeneity of
time and spaceand isotropy of space,one can deduce[40] that the interval s12 between
any two setsof spaceand time coordinates (events) is conserved under the transformation
between inertial frames. To simplify things a bit, we shall let frames K and K 0 coincide
at time t1 = t0

1 = 0 so that r 0
1 = r 1 = 0. The interval Eq.(1.3) may then be thought of as

the length of a four-dimensional vector r � which shall be denoted 4-position

r � = (r1; r2; r3; r4) = (r ; ict ) (1.4)

The Lorentz transformation preserves the length of 4-position and is a rotation in 4-
dimensionalspace-time where the timelik e coordinate is given by r 4 = ict . 2 To derive the
explicit form of the Lorentz transformation we �rst consider the transformation between
K0and K wherev is directed along the z-axisof both systems,sothat x- and y-coordinates
can be neglected. Since length of 4-position is conserved the coordinates (z0; ict 0) of K0

and (z; ict ) of K are related by an orthogonal transformation, which has the general form
�

z0

ict 0

�
=

�
cos� sin �

� sin � cos�

� �
z

ict

�
(1.5)

Alternativ ely, we can write out the two equations

z0 = z cos� + ict sin � (a)

ict 0 = � z sin� + ict cos� (b)
(1.6)

SinceK0 and K coincided at t1 = t0
1 = 0 the origin of K 0, z0 = 0, has coordinate z = vt at

time t in K. Insertion in Eq.(1.6a) immediately gives

tan � =
iv
c

) cos� =
�

1 �
v2

c2

� � 1
2

=  ; sin � =
iv 
c

(1.7)

from which we obtain the transformation
�

z0

ict 0

�
=

�
 iv 

c
� iv 

c 

� �
z

ict

�
(1.8)

2The Lorentz transformation is only a rotation when translations are excluded from the space-time
transformations. With translations included the Lorentz transformation is denoted inhomogeneousand
only the distance between4-position vectors, asexpressedby the interval, is conserved in the transformation
between inertial frames.
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In order to bring the transformation on the sameform as Eq.(1.1) we �rst write

r 0 = r + [( � 1) z �  vt]
v
v

; t0 =  t �
 vz
c2 (1.9)

and then usethe relation v � r = vz [41] to obtain

r 0 = r + v
�
( � 1) r �v

v2 �  t
�

t0 = 
�
t � v �r

c2

� (1.10)

Note that in the limit of c ! 1 (the non-relativistic limit) we recover the Galilean trans-
formation. The Lorentz (and Galilei) transformation wasderived with the restriction that
the orientation of spatial axeswere identical in K and K 03, which meansthat the trans-
formation Eq.(1.10) doesnot describe all possiblerotations in space-time. For instance, a
rotation about the time-like axis corresponds to a rotation in ordinary three dimensional
space.

The set of 4 � 4 rotation matrices in space-timeforms a continuous group, the (ho-
mogeneous)Lorentz group. Four-dimensional vectors, such as 4-position, whoselength is
preserved under Lorentz transformations, are denoted 4-vectors. Another 4-vector that
we shall make useof is the 4-gradient

@� =
�

r ; �
i
c

@
@t

�
(1.11)

The 4-vectors form a convenient and compact formalism for the construction of Lorentz
invariant mechanics in analogy with the Newtonian (Galilean invariant) mechanics. We
shall do so, in a somewhat heuristic manner, where our ultimate goal is to derive an
expressionfor the energy of an electron in an external �eld (e.g. the �eld of nuclei),
which will then be the starting point for the transition to relativistic quantum mechanics.
A basic prerequisite for such a derivation is a Lorentz-invariant time-like quantit y. We
de�ne proper time � by

d� =
ds
c

= dt

2

41 �

�
dx2

dt2 + dy2

dt2 + dz2

dt2

�

c2

3

5

1
2

= dt
�
1 �

v2

c2

� 1
2

=  � 1dt (1.12)

The coordinates r may be thought of as the coordinates of a particle moving with velocity
v. In the rest frame of the particle we have v = 0 so that d� = dt. Proper time is thus
seento be the time in the rest frame of the particle.

3This particular kind of Lorentz transformations is denoted a boost.
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Di�eren tation of 4-position with respect to proper time gives4-velocity

v� =
dr �

d�
=  (v ; ic) (1.13)

Note that the presenceof  in the space-partof 4-velocity limits all speedsto valuesequal
to or below the speedof light. This has the important consequencethat there can be no
instantaneousinteractions. Clearly then, the standard Coulomb potential is not Lorentz-
invariant and must be replacedby a potential that take retardation of the interaction into
account.

We proceedby de�ning 4-momentum as

p� = mv� = (p; iM c) ; p = M v; M =  m (1.14)

The latter relation indicates that the massM of a particle increaseswith the speed 4 The
timelik e component of p� can be associated with energy. To demonstrate this, we �rst
de�ne 4-force by di�eren tation of 4-momentum with respect to proper time

F� =
dp�

d�
= 

�
F ; ic

dM
dt

�
(1.15)

Sincep� is a 4-vector its length must be Lorentz invariant. We �nd

(p� )2 = M 2 �
v2 � c2�

= � (mc)2 (1.16)

Di�eren tation of Eq.(1.16) with respect to proper time gives the important relation

d(p� )2

d�
= 2p�

dp�

d�
= 0 ) F� p� = 0 (1.17)

showing that 4-momentum and 4-forceare orthogonal 4-vectors. A simple rearrangement
gives

dM c2

dt
= F � u =

F � dr
dt

=
dE
dt

(1.18)

where we have used the classical de�nition of work and energy in the �nal step. This
relation shows that the time derivative of the quantit y M c2 is associated with the time
derivative of energy. We perform a bold generalization:

d(M c2) = dE ) E = M c2 (1.19)

4Alternativ e views are expounded in [42, 43].
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The above relation shows that an in�nitesimal increasein the kinetic energyof a particle
gives a proportional increasein the mass of the particle, so that mass and energy are
equivalent. We can now write the 4-momentum of a free particle as

p� =
�

p;
iE
c

�
(1.20)

By insertion into Eq.(1.16) we �nally obtain

E 2 = m2c4 + c2p2 (1.21)

This is the relativistic expressionfor the energyof a free particle.
We seek,however, the description of an electron in a molecular �eld. External electro-

magnetic �elds are introduced by meansof the substitution [40]

p� ! � � = p� � qA � ; A � =
�

A ;
i
c
�

�
(1.22)

where we have introduced the 4-potential A � and the charge q of the particle. The vector
and scalar potentials A and � are related to the electric and magnetic �elds E and B by

E = �r � �
@A
@t

; B = r � A (1.23)

There exists a many-to-one correspondencebetweenelectromagneticpotentials and �elds,
in that the electric and magnetic �elds are invariant under the gaugetransformation

A � ! A � � @� f (1.24)

where f is any scalar function of spaceand time coordinates. For consistencywe must
therefore require that the laws of physicsare invariant under gaugetransformations. This
is ensuredby the substiution Eq.(1.22).

The fact that the 4-potential transform as the 4-position has some very important
consequences.Consider a intertial frame K in which there is a scalar potential � (r ), but
no vector potential and thus no magnetic �eld. By transforming to an inertial frame K 0

moving with uniform velocity v relative to K, we �nd a nonzerovector potential

A 0 = �

c2 � (r )v (1.25)

Note that the vector potential in K 0 is expressedin terms of a function of coordinates of
K. By transformation of the coordinates to those of K 0 retardation terms appear in the
vector potential. We shall not considertheseexplicitly . For v � c, the resulting magnetic
�eld in K0 is approximated by

B 0 = �
E � v

c2 (1.26)
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This meansthat a particle moving in an electric �eld experiencesa magnetic �eld in its
own rest frame. This is the origin of the spin-orbit e�ect [44].

If we perform the substitution Eq.(1.22) and take the squareroot on both sidesin the
resulting equation, we �nally arrive at a Lorentz invariant energyexpressionfor a particle
in an external �eld

E = �
p

m2c4 + c2� 2 + q� (1.27)

We seethat we have a choice of whether to take the positive or negative root. In classical
mechanics, the positive root is chosen,and the negative energy solutions discardedsince
discontinous changesare not allowed. In order to arrive at the non-relativistic limit, we
readjust our energy scaleby subtracting the rest massterm mc2 and expand the square
root in (� =mc)2

E 0 = E � mc2 = q� + mc2
�
1 +

� 2

2m2c2 �
� 4

8m4c4 + : : :
�

� mc2

=
� 2

2m
+ q� + O

�
� 4

m3c2

� (1.28)

The �rst two terms constitute the non-relativistic energy expressionfor a particle in an
exteral �eld. We shall seein section 1.8, however, that the expansionof the sqaureroot
in Eq.(1.27) in order to obtain approximations to the relativistic energy is beset with
di�culties.
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1.2 Spin

A colleaguewho met me strolling rather aimlessly in the beautiful streets
of Copenhagen[1922] said to me in a friend ly manner,"Y ou look very
unhappy"; whereupon I answered �er cely,"How can one look happywhen
he is thinking about the anomalous Zeeman e�e ct?"

W OLF GANG PAULI (1945) [45]

In the previous section we derived the Lorentz invariant energy expressionfor a parti-
cle in an external �eld in terms of classicalmechanics. We now consider the transition
from classicalto quantum mechanics. The transition usually proceedsby way of analogy.
The intrinsic angular momentum of the electron (spin) was, however, intro duced with no
classicalanaloguein the early days of quantum mechanics and therefore deserves special
consideration.

We �rst briey recall the formalism of quantum mechanics. In the Hilb ert-spacefor-
malism the states of a systemare represented by unit vectors 	 in an in�nite dimensional
function space,the Hilb ert space.A scalar product is de�ned by

h	 i j 	 j i =
Z

	 i (� )y 	 j (� ) d� (1.29)

where � are coordinates and d� the associated volume element. The state vectors are
normalized to unit y

h	 j 	 i = 1 (1.30)

Observables of the system are represented by Hermitian operators in the Hilb ert space.
The function spaceis complete in the sensethat any state vector can be expandedin the
eigenvectors � of any operator 
̂ corresponding to someobservable:

n
� i j 
̂� i = ! i � i

o
) 	 =

X

i

ci � i ; ci = h� j	 i (1.31)

The squareof the expansioncoe�cien ts ci givesthe probabilit y of the corresponding value
! i of the observable. The expectation value of the observable is

D

̂

E
=

D
	

�
�
� 
̂

�
�
� 	

E
=

X

i

! i c2
i (1.32)

Another quantit y related to experiment is the transition probabilit y

�
�
�
D

	 j

�
�
� 
̂

�
�
� 	 i

E�
�
�
2

(1.33)
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which gives the probabilit y of transition from the state 	 i to another state 	 j under the
inuence of an interaction represented by 
̂ . The normalization of state vectors leavesan
arbitrary unimodular complex phaseundetermined. The state vectors are therefore more
properly consideredas unit rays in the Hilb ert space. The absolute phase of the wave
function can not be observed experimentally since the phasesenter neither probabilites
nor expectation values. Relative phasescan, however, be observed by interferometry (see
e.g. [46, 47, 48]) 5.

Operatorsare traditionally derived by correpondencewith classicalmechanics,e.g. the
free-particle Schr•odinger equation is obtained from the corresponding classicalexpression

E =
p2

2m
) Ĥ 	 = i

@	
@t

; Ĥ = �
1

2m
r 2 (1.34)

by the operator substitution

E = � icp4 ! i
@
@t

; p ! i r (1.35)

A quantit y with no classicalanalogueis the electron spin, whoseexistencewas �rst
postulated in 1925by Goudsmit and Uhlenbeck [50]. Spin appearedfor the �rst time in a
wave equation,without having been inserted by hand, in the equation Dirac obtained by
linearizing the operator analogueof the relativistic energy expressionfor a free particle
Eq.(1.21), and wastherefore taken to bea relativistic e�ect. However, ashe stated himself,
Dirac was "just playing with equations" [51] and seeingwhat they gave. In particular he
tried to explore the relation

(� � p) (� � p) = p2 (1.36)

where � are the Pauli spin matrices [52]

� x =
�

0 1
1 0

�
; � y =

�
0 � i
i 0

�
; � z =

�
1 0
0 � 1

�
(1.37)

Eq.(1.36) is derived from the more generalrelation

(� � P) (� � Q) = P � Q + i � � (P � Q) (1.38)

This is an important relation apearing in many di�eren t contexts. It hasthe nice property
that it extracts a spin-independent termf from a spin-dependent operator expression.

5The phaseindeterminacy is closely related to the gauge(phase)invariance Eq.(1.24) intro duced in the
previous section. A phase can be global or local. In the latter case it is a function of space and time
coordinates. The physical properties of a free particle is invariant to any global phase change in its wave
function. If we require local gauge(phase)invariance, external �elds must be intro duced [49]
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We may play the same"game" in the non-relativistic domain. We then immediately
seethat spin is hidden in the kinetic energyoperator. We may introducean external �eld
by the substitution

p ! � = p + eA ; E ! E + e� (1.39)

Using Eq.(1.38) and the relation

� � � = � i r � A = � iB (1.40)

where � and A are the scalarand vector potentials respectively, we seethat an extra term
appears in the non-relativistic Hamiltonian

Ĥ =
� 2

2m
� e� +

e
2m

(� � B ) (1.41)

The term is identi�ed as the spin-Zeemanterm and represents the interaction of spin and
an external magnetic �eld B , from which the anomalousZeemane�ect arise.

Continuing the "game", it is even possibleto derive a four-component non-relativistic
equation for spin-1

2 particles, as done by L�evy-Leblond [53]

�
E (� � p)

(� � p) 2m

� �
� 1

� 2

�
= 0 (1.42)

By elimination of the component � 2 we recover Eq.(1.34). What is particularly interesting
about Eq.(1.42) is that it is not derived from correspondenceprinciples, but from exploring
projective (ray) representations of the non-relativistic analogueof the Lorentz group, the
Galilei group. This demonstrates that spin arises naturally in the study of space-time
symmetriesin both the non-relativistic and relativistic domains. A lucid discussionof this
point is given in [54, 55]. We return to the L�evy-Leblond equation in section 1.8.
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1.3 The Dirac equation

N.Bohr: { What are you working on?
P.A.M.Dir ac: { I'm trying to get a relativistic theory

of the electron.
N.Bohr: { But Klein has already solved that problem.

Sol vay Conference (1927) [56]

Let us now turn to the derivation of the relativistic wave equation for the electron. It will
turn out that it is not possibleto construct such an equation for the electron alone. Rather
we obtainan equation that describesboth the electron and its antiparticle, the positron.

Straightforward operator substitution Eq.(1.35) in the relativistic free-particle expres-
sion Eq.(1.21) leadsto the Klein-Gordon equation

�
1
c2

@2

@t2 + p2
�

� = � (mc)2 � (1.43)

The energy operator appears squared in this equation. Hence it has solutions of both
positive and negative energies.Contrary to the classicalcase,the negative energysolutions
cannot be discardedsinceour functional spacewould then becomeincomplete. There will
always bea �nite probabilit y of transitions betweenstatesof negativeand positiveenergies.
Another problem is that the negative energysolutions have negative probabilit y densities.
Thesedi�culties led to the rejection of the Klein-Gordon equation6. Instead, Dirac tried
to linearize the energy expressionEq.(1.21) by exploiting Eq.(1.36). "It took me quite a
while . . . beforeI suddenly realized that there was no needto stick to quantities � . . . with
just two rows and colums. Why not go to four rows and columns?" [56]. This lead to the
introduction of the Dirac � and � matrices

� =
�

0 �
� 0

�
; � =

�
I 2 0
0 � I 2

�
; [� q; � ]+ = 0; q = x; y; z (1.44)

and the Dirac equation [58, 59].
We shall derive the Dirac equation following an approach introduced by van Waerden

[60]. We expand the scalar wave function Eq.(1.43) using Pauli matrices

�
�

1
c2

@2

@t2 + p2
�

� =
�

i
c

@
@t

� (� � p)
� �

i
c

@
@t

+ (� � p)
�

� = (mc)2 � (1.45)

where � is a two-component wave function. To obtain a �rst-order equation we introduce

� 1 =
1

mc

�
i
c

@
@t

+ (� � p)
�

� ; � 2 = � (1.46)

6The Klein-Gordon equation was revived in 1934 as the relativistic wave equation for spinlesscharged
particles [57].
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The second-orderequation then becomesequivalent to two �rst-order equations

�
i
c

@
@t

� (� � p)
�

� 1 = mc� 2 (a)
�

i
c

@
@t

+ (� � p)
�

� 2 = mc� 1 (b)
(1.47)

To relate this to the Dirac equation for the free electron we take sumsand di�erences

i
c

@
@t

[� 1 + � 2] � (� � p) [� 1 � � 2] = mc [� 1 + � 2] (a + b)

(� � p) [� 1 + � 2] �
i
c

@
@t

[� 1 + � 2] = mc [� 1 � � 2] (b � a)

(1.48)

and introduce the notation

 L = � 1 + � 2;  S = � 1 � � 2 (1.49)

We then obtain
2

6
6
4

i
c

@
@t

� (� � p)

(� � p) �
i
c

@
@t

3

7
7
5

2

4
 L

 S

3

5 = mc

2

4
 L

 S

3

5 (1.50)

The 4-component can be completely in terms of 4-vectors and scalar quantities as

(i � @� � mc)  = 0;  � = (� � ; i� ) ;  =

"
 L

 S

#

(1.51)

and is thereforemanifestly Lorentz invariant Dirac. The Dirac equation in its more familiar
form is straightforwardly obtained by multiplication with � c from the left

�
i

@
@t

� c(� � p)
�

 = � mc2 (1.52)

External �elds are introduced by means of the substitutions in Eq.(1.22). The Dirac
equation then attains the form

D̂ =
�
ĥD � i

@
@t

�
 = 0; hD = � mc2 + c(� � � ) � e� (1.53)
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or, in full,

2

6
6
6
6
6
6
6
6
6
6
4

mc2 � e� � i @
@t 0 ecAz � icdz ecA� � icd�

0 mc2 � e� � i @
@t ecA+ � icd+ � ecAz + icdz

ecAz � icdz ecA� � icd� � mc2 � e� � i @
@t 0

ecA+ � icd+ � ecAz � icdz 0 � mc2 � e� � i @
@t

3

7
7
7
7
7
7
7
7
7
7
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6
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6
6
6
6
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 L�

 S�

 S�
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7
7
7
7
7
7
7
7
7
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= 0

(1.54)

where we have introduced the notation

dz =
@
@z

; d� =
@

@x
� i

@
@y

: (1.55)

The relativistic wave equation is seento have four components. The extra degreesof
freedomresults from the introduction of spin and the fact that the equation describesboth
the electron and its antiparticle, the positron. The upper two components are dominant in
electronic solutions and are therefore denoted the large (L) components, whereasthe two
lower components are denoted the small components. The large and small components
both have a spin-up (� ) and a spin-down (� ) part. In the next three sections we will
explore the physical content of the Dirac equation from its symmetry properties.



1.4 Spatial symmetry 21

1.4 Spatial symmetry

One day, while we were walking on the beach, he [Dir ac] told me that
he would teach me a saying:'It is easy, if you remember the symmetry.
Watch the symmetry.' He went on, 'When a man says yes, he means
perhaps; when he says perhaps, he means no; when he says no, he is
no diplomat. When a lady says no, she means perhaps; when she says
perhaps, she means yes; when she says yes, she is no lady'. With a
couple of repetitions, I learned it, and he was pleased.

S.A. KURSUNOGLU (1987) [61]

A symmetry operation Ĝ is de�ned as an operation that commutes with the Hamiltonian
of the system:

h
Ĝ; Ĥ

i
= 0 (1.56)

Symmetry operationsareeither unitary or antiunitary , asshown by the following argument
by Wigner [62]: Observables calculated from a given wave function are invariant under
any symmetry operation on the wave function. For the transition probabilit y Eq.(1.33)
we must therefore have

�
�
�
D

Ĝ	 i j Ĝ	 j

E�
�
�
2

= jh	 i j 	 j ij 2 = h	 i j 	 j i h	 i j 	 j i
� (1.57)

where the interaction operator 
̂ has been set equal to one for simplicit y (to obtain a
totally symmetric operator). The above relation can be realized by

D
Ĝ	 i j Ĝ	 j

E
= h	 i j 	 j i ; ) Ĝ is unitary

D
Ĝ	 i j Ĝ	 j

E
= h	 j j 	 i i ; ) Ĝ is anti-unitary

(1.58)

Let us �rst considerunitary symmetry operations and defer the discussionof antiunitary
operators until the next section. A more thorough discussionwill be found in Appendix C.
Herewewill exploit a simple, but powerful observation: In the absenceof any external �eld
the Dirac Hamiltonian Eq.(1.53) must be invariant under all possiblesymmetry operations
(unitary or antiunitary) of time and space. This follows from the homogeneity of space
and time and from the isotropy of space. The latter implies rotational invariance and
the conservation of total angular momentum. The Dirac Hamiltonian doesnot, however,
commute with the orbital angular mometum operator l , which meansthat someangular
momentum is "missing". By inspection, we �nd that the Dirac Hamiltonian commutes
with a total angular momentum j = l + s, which demonstrates that the Dirac equation
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describesparticles of spin s = 1
2 . The spin-operator s is represented by 1

2 � � where � � is
the 4 � 4 analoguesof the Pauli spin matrices

� � = (I 2 
 � ) =
�

� 0
0 �

�
; � =

�
0 I 2

I 2 0

�
;

[�; � ]+ = 0

[�; � ] = 0
(1.59)

The total angular momentum operator j is the generator of in�nitesimal rotations. A
�nite rotation � about an axis represented by the unit vector n is given by

R (�; n) = e� i� (n �j ) = e� i� (n �l )e� i� (n �s) = Rr (�; n) R� (�; n) [l ; s] = 0 (1.60)

Note from the above relation that the rotation operator splits into one part acting on
spatial coordinates and onepart acting on spin coordinates. The rotation operator for the
spin part is straightforwardly establishedas (seeAppendix C)

R� (�; n) = cos
1
2

� � i (� � � n) sin
1
2

� (1.61)

In particular binary rotations about main axesare given by

Cx
2 = � i� � x ; Cy

2 = � i� � y ; Cz
2 = � i� � z (1.62)

We note that Cq
2Cq

2 = � I 4 for all coordinates q which demonstratesthat fermion functions
changesign upon a rotation 2� , in contrast to bosonfunctions for which a rotation 2� is
equivalent to the identit y operation. The fermion phaseshift hasbeenveri�ed experimen-
tally in neutron [63, 64, 65] and NMR [66] interferometry.

Representations in spin spaceof other symmetry operations can be derived using the
fact that the operator (� � p) must be invariant under all symmetry operations. Hencethe
Dirac � -matrices must transform as the momentum operator p, that is, as the Cartesian
coordinates, so that we have

Ĝ� � Ĝ� 1
� = Ĝr pĜ� 1

r (1.63)

where Ĝr and Ĝ� act on spatial and spin coordinates, respectively. Rotations in spin
spaceand ordinary spaceare connectedthrough Eq.(1.63), which establishesa mapping
between the group of SU(2) of special unitary matrices (acting on 2-spinors) and the
group SO(3) of special orthogonal matrices (acting on Cartesian coordinates). However,
the mapping is a two-to-onehomomorphismsincea rotation 2� is equivalent to the identit y
operation in ordinary space,whereasit leadsto a phaseshift in spin space.Note that the
above relations leave a complex phaseundetermined for Ĝ� , in accordancewith the phase
indeterminacy of the wave function.
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Under spaceinversion the momentum operator changessign, so that the spin part of
the spaceinversion operator is determined by

î � � î � 1
� = � � (1.64)

The above relation implies that the inversion operator î � anticommutes with the Dirac
� -matrices. An obvious choice for the inversion operator is therefore the Dirac � -matrix.
We de�ne

î � = � i� (1.65)

The fact that the Dirac � -matrix appearsin the spin part of the inversionoperator demon-
strates that the large  L and small  S components have opposite parit y7 Finally we derive
expressionsfor the operations of reection in the spin coordinates using the fact that re-
ections are the product of inversion and binary rotations :

�̂ yz = � � � � x ; �̂ zx = � � � � y ; �̂ xy = � � � � z (1.66)

We arrive at the sameforms (within a phasefactor) using Eq.(1.63), for example

�̂ yz (� x ; � y ; � z) �̂ � 1
yz = (� � x ; � y ; � z) ) �̂ yz = � � � � x (1.67)

Two-component analoguesof the symmetry operations derived so far are obtained by the
substitutions

� � ! � ; ! � ! I 2 (1.68)

A problematic aspect of the representations derived so far is that they are at odds
with the conventions of double group theory. Double groupswere intro ducedasan arti�ce
by Bethe [69] to avoid two-valued representations of fermion functions, which are not
true representations of the symmetry group, and thereby recover the whole machinery of
group theory. He introduced an extra element E , corresponding to a rotation 2� about
an arbitrary axis. This leads to a doubling of the number of symmetry operations of the
group, but generallynot to a doubling of the number of irreducible representations (irreps).
The extra irreps that appear in the double groups are spannedby fermion functions and
are consequently denoted fermion irreps, whereasthe irreps of the corresponding single
groups are bosonirreps.

7Note from Eq.(1.49) that the functions � 1 and � 2 are not eigenfunctions of parit y. Rather, the parit y
operator takes � 1 into � 2 and vice versa. The Eqs.(1.47) decouple for rest mass m = 0. Eq.(1.47b) was
therefore proposed as the wave equation for a masslessspin- 1

2 particle in 1929 by Weyl [67], but was
rejected since the wave function � 1 is not invariant under parit y. Parit y is, however, not conserved in weak
interactions. With the demonstration in 1957 of the violation of parit y conservation in the � -decay of the
60 Co - nucleus [68], the Weyl equation was revived as a two-component equation for the neutrino.
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The introduction of E doubles the order of all rotations. On the other hand, the
order of inversion is still taken to be two ( î2 = E), sincespaceinversioncommutes with all
rotations in ordinary space.In our representation, Eq.(1.65), however, inversion is of order
four. Since there is an inherent phaseindeterminacy, we could correct this by changing
the phaseof our inversion operator. However, we can show that operation of inversion
must be of order four if we want consistency in the representation of spatial symmetry
operations.

It is well known that two spins s = 1
2 couple to a singlet function and the three

components of a triplet function. The latter three functions transform as the spherical
harmonicsYlm with l = 1. By forming the direct product of a 2� 2 matrix representation of
a symmetry operation (in the two-component case)with itself, we obtain a link to matrix
representations of the spherical harmonics with l = 1. The direct product gives a 4 � 4
matrix from which we by a unitary transformation can isolate a 3 � 3 block representing
the corresponding symmetry operation in the basisof spherical harmonics for l = 1. The
phasesfor the symmetry operations presented above have been chosen with care so as
to obtain agreement with the Condon-Shortley phaseconvention for spherical harmonics
[70]. In the caseof inversion, the caseis, however, unambiguous: The direct product of
the two-component representation of inversion with itself gives

� iI 2 
 � iI 2 = � I 4 (1.69)

The identit y matrix is invariant under all unitary transformations, and so we obtain � I 3

as the representation of inversion in the basis of f Y1;1;; Y1;0; Y1;� 1g, as we should. It is
not possibleto obtain the samerepresentation starting from a two-component inversion
operator of order only two. Altmann [71], in the languageof projective representations,
seesthis discrepancybetweenrepresentations merely as a choice of gauge(phase). In my
opinion his explanation seemssomewhatad hoc. There is a fundamental weaknessin the
derivation of the behaviour of inversion in double group theory. The extra element E is
introduced to account for the fact that fermion functions have a behaviour under rotation
that is di�eren t from rotations in ordinary space.Yet the behaviour of inversion in double
group theory is deducedwith explicit referenceto inversion in ordinary space,which is
somewhat inconsistent. It would be interesting to seewhether the behaviour of fermion
functions under the operations of inversion or reections can be resolved experimentally.
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1.5 Time rev ersal symmetry and quaternion algebra

The invention of the calculus of quaternions is a step towards the knowl-
edge of quantities related to space which can only be compared for its
importance, with the invention of triple coordinates by Descartes. The
ideas of this calculus, as distinguished from its operations and symbols,
are �tte d to be of the greatest use in all parts of science.

J.C.MAXWELL (1869)

Quaternions came from Hamilton after his really good work had been
done; and, though beautiful ingenious, have been an unmixed evil to
those who have touched them in any way, including Clerk Maxwell.

LORD KEL VIN (1892) [72]

We now turn our attention to antiunitary operators. From the previous section we recall
that an antiunitary operator K̂ is de�ned by

D
K̂ � 1 j K̂ � 2

E
= h� 2 j � 1i = h� 1 j � 2i � = K̂ h� 1 j � 2i (1.70)

The last two terms indicate the antilinearit y of antiunitary operators:

K̂ (a� 1 + b� 2) = a� K̂ � 1 + b� K̂ � 2 (1.71)

It is straightforwardly shown that the product of two antiunitary operators is a unitary
operator, which implies that any antiunitary operator can be written as a product of
a unitary operator and some antiunitary operator. The simplest choice of an operator
to full�ll conditions Eq.(1.70) and Eq.(1.71) is the complex conjugation operator K̂0. A
generalantiunitary operator may therefore be written as

K̂ = UK̂0 (1.72)

In non-relativistic systemsK̂0 commutes with the Hamiltonian in the absenceof external
magnetic �elds and represents the operation of time reversal[73]. This is straightforwardly
seenby letting K̂0 operate on both sidesof the time-dependent Schr•odinger equation

K̂0

�
i

@
@t

	 (r ; t)
�

= K̂0 [H 	 (r ; t)]

+

� i
@
@t

K̂0	 (r ; t) = i
@

@(� t)
K̂0	 (r ; t) = H K̂0	 (r ; t)

h
H ; K̂0

i
= 0

+

i
@
@t

�
K̂0	 (r ; � t)

�
= H

�
K̂0	 (r ; � t)

�

(1.73)
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We considernext the form of the time reversal operator K̂ in the 4-component formalism.
Momenta are reversedunder the operation of time reversal

K̂pK̂ � 1 = � p (1.74)

Using the general form Eq.(1.72) of an antiunitary operator and Eq.(1.63) we therefore
�nd that

K̂ � K̂ � 1 = U� � U � 1 = � � ) U (� � x ; � y ; � � z) U � 1 = (� x ; � y ; � z) (1.75)

Sincethe Dirac � matrices transform asthe coordinates, we identify U asa rotation about
the y-axis Eq.(1.62) and write the time reversal operator as

K̂ = � i�� yK̂0 = � i (I 2 
 � y) K̂0 (1.76)

Sincewe are mainly interested in fermion functions, we can alternatively de�ne the time
reversal operator by its action on a fermion function � , that is

K̂a� = a� K̂ � ; K̂2� = � � (1.77)

We shall usethe convention

K̂ � = � (1.78)

and denote � and � as Kramers partners. We shall now use the alternative de�nition
Eq.(1.77) to derive the general matrix structure of Hermitian operators 
̂ � that are
symmetric(+) or antisymmetric( � ) under time reversal [33, 74]

K̂ 
̂ t K̂ � 1 = t 
̂ t ; t = � 1 (1.79)

We considerthe matrix representation of 
̂ t in a Kramers restricted basis which we de�ne
as follows: Operate with K̂ on a set of fermion basis functions f � pg to generatea com-
plementary basis

�
� p

	
. The Kramers restricted basis is then union of the two sets. We

establish the following relations betweenmatrix elements of 
̂ t


 pq = ^calK 
 �
pq =

D
K̂ � q

�
�
� K̂ 
 K̂ � 1

�
�
� K̂ � p

E
= t
 �

pq


 pq = ^calK 
 �
pq =

D
K̂ � p

�
�
�K̂ 
 K̂ � 1

�
�
� K̂ � q

E
= � t
 �

pq

(1.80)

From theserelations we �nd that the matrix representation of 
̂ � has the structure


 t =
�

A B
� tB � tA �

�
;

A y = A ; Apq = 
 pq

B T = � B ; Bpq = 
 pq
(1.81)
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Let us investigate the properties of the above matrix structure. Since 
 � is Hermitian,
its matrix may be diagonalizedby a unitary transformation, giving real eigenvalues" :

�
A B

� tB � tA �

� �
c�

c�

�
= "

�
c�

c�

�
(1.82)

We write out the corresponding matrix equations

Ac � + Bc � = "c�

� tB � c� + tA � c� = "c� ;
(1.83)

conjugate both equationsand then multiply the �rst with t and the secondwith � t. This
gives

tA � c� � + tB � c� �
= t" c� �

Bc � � � Ac � � = � t" c� � (1.84)

which can be expressedon matrix form as

�
A B

� tB � tA �

� �
� c� �

c� �

�
= t"

�
� c� �

c� �

�
(1.85)

Hencewe can concludethe following about the matrix of 
̂ in a Kramers restricted basis

� If 
̂ is symmetric with respect to time reversal, its matrix is doubly degeneratewith
eigenvectors related by time reversal symmetry

��
c�

c� �

�
;
�

� c�

c� �

��
(1.86)

To someextent time reversal symmetry recovers the spin symmetry lost in the rel-
ativistic domain, but the recovery is only partial. In the non-relativistic domain a
totally symmetric (spinfree) operator doesnot couple two spin orbitals if they have
opposite spin. In the relativistic domain we have the weaker relation

D
� i

�
�
� 
̂ +

�
�
� � j

E
� 0 only if i = j (1.87)

� If 
̂ is antisymmetric with respect to time reversal, then eigenvectorsare pairwise re-
lated by time reversalsymmetry Eq.(1.86) that haveeigenvaluesof the sameabsolute
value, but with opposite signs.
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Let us now investigate time reversalsymmetry in the Dirac equation. It turns out that
this is best done by a reordering of the 4-spinors:

�
 L

 S

�
=

2

6
6
6
6
6
6
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 S�

 S�
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!

2

6
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 S�

 L�

 S�

3

7
7
7
7
7
7
7
7
7
5

=
�

 �

 �

�
(1.88)

From the matrix structures derived above we can immediately split the Dirac equation
Eq.(1.53) into one part that is symmetric and another part that is antisymmetric under
the operation of time reversal

D̂ =
h
D̂+ + D̂ �

i
 = 0 (1.89)

The symmetric part is

D̂+ =

2

6
6
6
6
6
6
6
6
6
4

mc2 � e� � icdz 0 � icd�

� icdz � mc2 � e� � icd� 0

0 � icd+ mc2 � e� icdz

� icd+ 0 � icdz � mc2 � e�

3

7
7
7
7
7
7
7
7
7
5

(1.90)

and the antisymmetric part is

D̂ � =

2

6
6
6
6
6
6
6
6
6
6
4

� i @
@t ecAz 0 ecA�

ecAz � i @
@t ecA� 0

0 ecA+ � i @
@t � ecAz

ecA+ 0 � ecAz � i @
@t
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7
7
7
7
7
7
5

(1.91)

We can now explicitly show that the pair of eigenvectors in Eq.(1.86) are related by
time reversal symmetry. With reorderedspinors (Eq.1.88) the time reversal operator has
the form

K̂ = � i [� y 
 I 2] K̂0 (1.92)
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Operating with K̂ on an eigenvector c we obtain

K̂c =
�

0 � I 2

I 2 0

�
K̂0

�
c�

c�

�
=

�
� c� �

c� �

�
= c (1.93)

as required.
By restricting the Dirac operator to the time symmetric part D̂+ only, a considerable

simpli�cation is possibleby the introduction of quaternion algebra. A (real) quaternion
number8 is written as

q =
3X

�=0

c� e� = c0 + c1�� + c2�� + c3�k; c� 2 �R (1.94)

in which the quaternion units ��, ��, and �k obey the following multiplication rules

��2 = ��2 = �k
2

= ���� �k = � 1 (1.95)

The quaternion units are equivalent in the sensethat they may be interchangedby cyclic
permutation �� ! �� ! �k ! ��. Thus, in a complex number a + ib the imaginary i may
correspond to either ��, ��, or �k without changing its algebraic properties.

When Pauli introduced the spin matrices that bear his name, Jordan pointed out[76]
that the properties of imaginary i times the Pauli matrices were identical to that of the
quaternion units ��,�� and �k. Speci�cally we have the mapping

i� z $ ��; i� y $ ��; i� x $ �k (1.96)

which allow us to represent a quaternion number by a 2 � 2 complex matrix

q = a+ b�� $ Q = c0I 2 + c1i� z + c2i� y + c3i� x =
�

a b
� b� a�

�
;

a = c0 + ic1;
b = c2 + ic3;

(1.97)

so that

q1q2 $ Q1Q2 (1.98)

This is analogousto the complexnumbers,which may berepresented by 2� 2 real matrices.
Two equivalent representations exist

c = a + ib $

8
>>>><

>>>>:

C =
�

a b
� b a

�

C0 =
�

a � b
b a

� a;b;2 �R (1.99)

8Note that quaternion numbers are not quaternionic, just as complex numbers are not complexionic.
The use of quaternion algebra in physics is described in [45, 75].
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The quaternion analogueof C' would be

Q0 =
�

a � b�

b a�

�
(1.100)

However we �nd that Q0
1Q0

2 6$ q1q2. Instead we have Q0
1Q0

2 $ q2q1. This demonstrates
a troublesome feature of quaternion numbers, namely that they do not commute under
multiplication 9.

Quaternion algebra allows block diagonalization of the matrix of an operator that is
symmetric under time reversal. By comparing Eq.(1.81) and Eq.(1.97) we seethat the
matrix 
 + has a structure identical to that of the 2 � 2 complex matrix representation Q
of quaternion numbers, which meansthat it can be expressedin terms of Pauli matrices
or quaternion units. Block diagonalization is achieved through the unitary quaternion
transformation

U y
 + U =
�

A + B�� 0
0 � �k (A + B��) �k

�
; U =

1
p

2

�
I ��I

��I I

�
(1.101)

Due to the decoupling of blocks, the transformation leads to an exact reduction of the
time reversal symmetric Dirac operator D̂+ Eq.(1.90) to two-component form, albeit in
terms of quaternion algebra (indicated by upper prescript Q):

Qĥ Q = E Q (1.102)

where

Q ĥ =
� �

mc2 � e� 0
0 � mc2 � �

�
� c��

�
0 dz

dz 0

�
� c��

�
0 dy

dy 0

�
� c�k

�
0 dx

dx 0

��

(1.103)

The quaternion eigenfunctions Q  are related to the corresponding complex reordered
4-spinorsEq.(1.90) by

Q =
h
 � � �  � �

��
i

$
�

 �

 �

�
(1.104)

The quaternion Dirac operator hasan intriguing structure. The scalar potential enter the
real part, whereasthe kinetic energy part is spannedby the quaternion units ��,�� and �k.
The equivalenceof quaternion units thus parallels the equivalenceof the coordinate axes

9A historical note: In the early days of quantum mechanics Dirac intro duced the concept of c-numbers
and q-numbers where "c stands for classical or maybe commuting" and "q stands for quantum or maybe
queer"[56]. Maybe they should stand for complex and quaternion?
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(x,y,z). Note that in the quaternion formulation the time reversaloperator is mapped into
� ��, for we have

� �� Q  =
h
�  � �  � ��

i
$

�
�  � �

 � �

�
= K̂

�
 �

 �

�
(1.105)

Before concluding this section, two �nal remarks should be made:

1. The full Dirac equation Eq.(1.54) may be expressedin terms of complex quater-
nions. Complex quaternions[77, 78] are obtained by replacing the real coe�cien ts
in Eq.(1.94) by complex coe�cien ts. The substitutions A = iA 0 and B = iB 0 in
Eq.(1.81) establishesthe relation 
 � = i 
 0

+ . In the complex quaternion Dirac
equation the time symmetric D̂+ and antisymmetric D̂ � parts enter the real and
imaginary parts of the coe�cien ts, respectively. We shall not pursue this approach
here and refer to the literature[79, 80, 81, 82, 83] for details.

2. For a unimodular number the matrix C Eq.(1.99) is identical to a 2 � 2 orthogonal
matrix (seeEq.(1.5)), which represents a two-dimensionalrotation. The quaternion
units ��, �� and �k form the basis for general rotations in three-dimensional space,a
feature that is seenfrom Eq.(1.62). In fact the eight basic binary spatial symmetry
operations can be mapped into the complex quaternion units as shown in Tab.1.5.
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Table 1.1: Mapping betweenthe basiceight binary symmetry operations and the complex
quaternion units

Proper rotations Improper rotations
Ê ! I 2 ! 1 î ! � iI 2 ! � i
Ĉz

2 ! � i� z ! � �� �̂ xy ! � � z ! i��
Ĉy

2 ! � i� y ! � �� �̂ zx ! � � y ! i��
Ĉx

2 ! � i� x ! � �k �̂ yz ! � � x ! i�k
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1.6 Charge conjugation

Sehr viel ungl•ucklicher bin ich •uber die Frage nach der relativistischen
Formulierung und •uber die Inkonsequenz der Dir ac-Theori . . . Also ich
�nd' die gegenw•artige Lage ganz absurd und hab' mich deshalb, quasi
aus Verzweiung, auf ein anderes gebiet, das des Ferromagnetismus
begeben.

W. HEISENBER G (1928) [61]

In the previous sections we explored various symmetries of the Dirac equation. In
generala symmetry operator, that is an operator which commutes with the Hamiltonian,
introduces a degeneracy, where the degeneratesolutions are related by the symmetry
operation. On the other hand, an "antisymmetric" operator, that is an operator which
anticommute with the Hamiltonian, leads to solutions related by the operator and that
have energiesof the sameabsolutevalue, but opposite signs. Such an operator is obviously
at play in the free-particle Dirac equation. It has positive and negative energy branches
separatedby an energygapof 2mc2. Positive and negative eigenvaluesarepairwiserelated,
which corresponds to taking the positive or negative root in the corresponding classical
free-particle energyexpressionEq.(1.21).

The pairing of eigenvaluesis, however, lifted with the introduction of an external �eld.
Considersomepositive energysolution of the Dirac equation in the presenceof an external
�eld

h
� mc + (� � (p + eA )) �

e
c

� � p0

i
 = 0 (1.106)

Its classicalanalogueis obtained by taking the positive squareroot in the corresponding
energyexpressionEq.(1.27).

E = +
q

m2c4 + c2 (p + eA )2 � e� (1.107)

In order to arrive at a negative energy of the sameabsolute value we have not only to
choosethe negative squareroot, but reversethe sign of the momentum and the external
�elds as well. An alternative to sign reversal of the �elds is to introducea positive charge
+e. This means that a positive energy solution of the Dirac equation for a particle of
charge � e is a negative energysolution of the Dirac equation for a particle of charge +e:

h
� mc + (� � (p � eA )) +

e
c

� � p0

i
 = 0 (1.108)

The two Dirac equations are related by the operation of charge conjugation Ĉ, which
anticommutes with the Dirac Hamiltonian in the limit of no external �eld. We shall
derive the explicit form of this operator.



34 Ch.1 One-electron systems

We �rst note that the sign of the momentum may be reversedby complexconjugation.
If we perform this operation on the Dirac equation for charge {e and then multiply both
sideswith a minus sign, we obtain

h
� � mc + (� � � (p � eA )) +

e
c

� � p0

i
 = 0 (1.109)

From this we deduce that the charge conjugation operator is antiunitary and can be
expressedas

Ĉ = UK̂0 (1.110)

where K̂0 is the complex conjugation operator and U is someunitary operator de�ned by
the relations

U� � U � 1 = U (� x ; � � y ; � z) U � 1 = � (a)

U� U � 1 = � � (b)
(1.111)

Since the � -matrices transform as the coordinates, we seethat the operator U is related
to the operation of reection in the xz-plane Eq.(1.66). However, all reections commute
with the � -matrix and to ful�ll condition Eq.(1.111b) a slight mod�cation is required.
With the introduction of an arbitrary phasewe arrive at

Ĉ = i� � yK̂0 (1.112)

The e�ect of the charge conjugation operator on a 4-spinor is

Ĉ (E) = i� � yK̂0
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(1.113)

In particular, if  is a free-electron solution of energy +E, then  C is a free-electron
solution of energy � E.

Let us now look into the physics of charge conjugation. In the early days of quan-
tum mechanics, the negative energy solutions was an extremely troublesome aspect of
the Dirac equation. Contrary to classical mechanics, the negative energy solutions can
not be discarded, since there will always be a �nite probabilit y for transitions between
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positive and negative energy solutions. However, this makes atoms and moleculeshighly
unstable, contrary to what is observed experimentally. It can for instance be shown that
the hydrogen atom would decay in lessthan onenanosecondand the electron would cause
a radiativ e catastrophe as it falls down the negative energy branch through an in�nite
successionof transitions[84]. Dirac provided a solution [85] by stating that all negative
energystates are occupied. Transitions down into the negative energybranch, the "Dirac
sea", are then forbidden by the Pauli exclusion principle. On the other hand, transitions
from the negative energy branch into positive energy states may be induced by energies
larger than 2mc2:

Epositive energyelectron � Enegative energyelectron > 2mc2 (1.114)

However, from charge conjugation symmetry we seethat we can reinterpret the negative
energy electronic states as positive energy states of a particle of electron mass,but with
charge +e, which will be termed the positron. It is the antiparticle of the electron, the
"hole" left by the excited electron. Excitations of an electron out of the Dirac seais then
seento be the creation of an electron-positron pair:

Eelectron + Epositron > 2mc2 (1.115)

The positron was observed experimentally in 1932 [86]. This model leads to a radical
reinterpretation of the vacuum. The energy-time uncertainity relation allows the cre-
ation of virtual electron-positron pairs at energiesbelow 2mc2 so that the vacuum is now
a "bubbling soup" of virtual pairs that polarize in the presenceof external �elds. Its
proper mathematical description is provided by quantum electrodynamics (QED), which
allows particle numbers to vary. In this theory, electronsand positrons appear as quanta
of the quantized Dirac �eld, and vacuum uctuations are zero-point oscillations of this
�eld. Electromagnetic interactions are mediated by the exchange of virtual photons of
the correspondingly quantized electromagnetic�eld. The interaction of the electron with
zero-point oscillations of the electromagnetic�eld constitute its self energy. The combined
e�ect of vacuum polarization and self energy is observed experimentally as the Lamb shift
[87, 88], which in the hydrogen atom leads to a splitting of the 2s1=2 and 2p1=2 - atomic
levels by 0:035cm� 1 (about 10% of the spin-orbit splitting of 2p). The Lamb shift is of
order � (Z � )4 where � � (1=137) is the �ne-structure constant. The scaling to fourth
order in the nuclear charge Z meansthat the Lamb shift can becomequite large in high-Z
systems. In U91+ the splitting due to the Lamb shift is thus of the order 6 � 105cm� 1, as
hasbeenobserved experimentally[89]. In relativistic molecular calculations we will invoke
the no-pair approximation, that is we shall neglectall QED e�ects, which meansthat our
theory can only be correct to the order of the Lamb shift.
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1.7 The Dirac equation in a molecular �eld

. . . John Dalton . . . used square wooden blocks to explain the atomic the-
ory, with the result that a 'dunce, when asked to explain the atomic the-
ory, said: "A toms are square blocks of wood invented by Mr Dalton"'

T.TRA VIS & T.BENFEY (1992) [90]

After having explored the symmetriesof the generalDirac equation in the previous three
sections,we now construct a Dirac operator pertinent to the problem at hand, namely the
description of molecules.For the moment we will restrict our attention to the one-electron
part of the problem, and defer the discussionof the electron-electroninteraction until the
next chapter. Furthermore, we shall for the moment only consider stationary states of
molecular systems.This meansthat the operator i @

@t is replacedby the stationary energy
E after extraction of a complex phaseexp(� iE t). In the spirit of the Born-Oppenheimer
approximation [91] the nuclei will be treated as stationary sourcesof external �elds. This
�xes our frame of referenceand thereby ruins Lorentz invariance. It does,however, provide
a workable model for the relativistic description of molecules. Let us therefore consider
the electromagnetic�elds generatedby static nuclei.

If a nucleusposessesspin I , it generatesa vector potential

A n (r ) = � 2gN � N
I � r

r 3 (1.116)

where the nuclear g-factor gN is of order unit y and � is the �ne-structure constant. The
ratio betweenthe nuclear magneton � N and the corresponding Bohr magneton � B for the
electron is inversely proportional to the ratio of massesbetweenthe proton and the elec-
tron. Due to this ratio the magnetic �elds generatedby nuclei are about thousand times
smaller than the �elds generatedby the electron spin magnetic moment. The magnetic
hyper�ne e�ects generatedby nuclear spins may therefore safely be treated as perturba-
tions. Magnetic �elds from other external sourcesin a typical experimental situation are in
generaleven smaller. We may therefore neglect the vector potential in variational calcula-
tions. This hasthe advantage that the resulting Dirac operator is time reversalsymmetric
and that its solutions are thereby at least doubly degenerate.As seenin section 1.5, this
may be exploited in a quaternion formulation of the Dirac equation.

The scalar potential due to a nucleusN has the general form

� (r i ) =
Z

� N (r 0)
jr i � r 0j

dr 0 (1.117)

where � N is the nuclear charge distribution. In non-relativistic theory, nuclei are usually
treated as point charges

� N (r i ) = ZN � (r N ) (1.118)
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(where � is the three-dimensionalDirac delta function) giving a Coulombic potential

� (r i ) =
ZN

r iN
; r iN = r i � r N (1.119)

However, this introduces weak10 singularities in the relativistic wave functions at the
nuclear origins [92], which are hard to model in a �nite basis approximation. With the
introduction of a �nite nucleus model, which in any caseis a better physical model, the
wave functions attain a Gaussianshape at the nuclear origins [93]. This favors the use
of Gaussianbasis functions in a �nite basis approximation, which is the standard choice
in non-relativistic molecular calculations. The nuclear charge distribution itself is often
represented by a single Gaussianfunction [94]

� N (r i ) = ZN

� � N

�

� 3
2 exp

�
� � N r 2

iN

�
(1.120)

since this leads to integrals that are easily evaluated. The exponent � N is chosento give
a root-mean-squarevalue hr i

1
2 of the nuclear charge distribution



r 2� 1

2 =
3
2�

(1.121)

equal to the empirical formula [95, 13]



r 2� 1

2 =
h
0:836A

1
3 + 0:57

i
� 10� 15mbohr (1.122)

where A is the atomic massnumber. This gives the formula

� =
3
2

�
0:529167

0:836A
1
3 + 0:57

� 2

� 1010 (1.123)

The corresponding potential is then given in terms of the incomplete gammafunctions Fn :

� (r i ) = ZN

r
4� N

�
F0(� N r 2

iN ); Fn (x) =
Z 1

0
exp

�
� xt 2�

t2ndt (1.124)

The Gaussianchargedistribution leadsto a long-rangebehaviour of the potential identical
to that of a Coulombic potential, but a �nite value at the nuclear origin

� (r N ) = 2ZN

r
� N

�
(1.125)

10 The singularities are weak in the sensethat the wave function is still square integrable.
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The shapeof the nuclearchargedistribution is not consideredimportant for chemistry [96],
but the Gaussianmodel can easilybe improved by including more Gaussianfunctions. For
instance, a nuclear quadrupole moment could be introduced by inclusion of Gaussiand-
functions in order to model electric hyper�ne interactions.

Basedon the discussionabove, we seethat we can choosethe time reversal symmetric
Dirac operator to describe an electron in a molecular �eld. The molecular �eld Dirac
operator can thereby be given a compact form in terms of quaternion algebra.
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1.8 Appro ximations to the Dirac equation

The number 1/137, the �ne structure constant which his teacher Som-
merfeld had intr oduced into physics, was Pauli's link to the 'magic-
symbolic' world with which he was so familiar. Pauli spent the last few
days of his life in the Red Cross Hospital in Z•urich, where he died on
15 December 1958. A fact which had disturbed him during these last
days was that the number of his room was 137.

C.P.Enz (1972) [97]

1.8.1 4-comp onent forms

In this section we consider the approach to the non-relativistic limit (n.r.l.) c ! 1 of
the Dirac equation for molecular �elds discussedin the previous section. All changesin
the values of observables that result from switching from the Dirac equation to its non-
relativistic counterpart constitute relativistic e�ects. By a perturbation expansionof the
Dirac equation in parametersrelated to the �ne structure constant � = c� 1, it is possible
to obtain approximate Hamiltonians that incorporate relativistic e�ects to a given order
in the expansionparameter. The purposeof this section is not to provide a comprehensive
overview of such approximate Hamiltonians. Rather we employ perturbation expansionto
identify and investigate the physical content of various relativistic e�ects. In addition, we
shall discussthe di�culties associated with the derivation of approximate Hamiltonians.

Let us �rst establish the n.r.l. of the Dirac equation. We shall limit our discussion
to the Dirac equation of an electron in the molecular �eld of �xed nuclei. To align the
relativistic and non-relativistic energy scales,we subtract the rest mass term mc2 from
the Dirac equation. This amounts to the substitution

� ! � 0 = � � I 4 (1.126)

and leadsto the operator

ĥD ;V =
h
� 0mc2 + c(� � p) + V̂

i
; V̂ = � e� (1.127)

and the corresponding equation
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Alternativ ely, it can be expressedas two coupled �rst-order di�eren tial equations

V̂  L + c(� � p)  S = E L ; (a)

c(� � p)  L +
�

V̂ � 2mc2
�

 S = E R ; (b)
(1.129)

By solving Eq.(1.129b) for  S, we �nd that the large  L and small  S components are
coupled through the relation

 S =
1

2mc
B (E) (� � p)  L ; B (E) =

�
1 +

E � V
2mc2

� � 1

(1.130)

The energy-dependent operator B (E) is totally symmetric under the symmetry group de-
�ned by the molecular �eld. It is therefore the operator (� � p) that relatesthe symmetries
of the large and small components. The large and small components are thereby seento
have opposite parities, and we may anticipate that in a �nite basisapproximation to the
Dirac equation, the large and small components will have to be expandedin separatebasis
sets.

Electronic solutionsof the Dirac equation Eq.(1.129)have energiesE � 0, which means
that the small components are generallyof order � smaller than the large components and
vanish in the n.r.l., hencethe notation employed for the upper and lower two components.
The roles are reversedfor positronic solutions (E � � 2mc2). Note, however, that for sin-
gular potentials such as the Coulombic potential the n.r.l. is only reached asymptotically
and even for a �nite nucleusEq.(1.130) indicates that the small components of electronic
solutions are to a large extent localized at the nuclear origins.

It is obvious from the form of Eq.(1.129) that its non-relativistic limit cannot be
obtained directly. However, we may follow the approach of Kutzelnigg [98] and perform a
changeof metric by the substitution
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In matrix form we obtain the equation
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which for electronic solutions goes into the 4-component non-relativistic L�evy-Leblond
equation Eq.(1.42) in the non-relativistic limit. Note that in this approach the upper and
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lower two components are of the sameorder in � , which we have indicated by using the
superscript L on both components. The n.r.l. for positronic solutions is obtained by the
analogoussubstitution
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5 !
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5 =

2

4
c L

 S

3

5 (1.133)

The fact that positronic and electronic solutions have separatenon-relativistic limits may
be exploited to imposeboundary conditions on approximate Hamiltonians, so that they
are restricted to electronic solutions only. The modi�ed Dirac equation Eq.(1.132) forms
the basis for the direct perturbation theory of Kutzelnigg [98, 14].

The n.r.l. of the modi�ed Dirac equation clearly demonstratesthat spin is not a rela-
tivistic e�ect. The non-relativistic spin-freeHamiltonian of an electron in a molecular �eld
is, however, straightforwardly obtained from the non-relativistic L�evy-Leblond equation
by elimination of the small components. In the non-relativistic domain, the spatial and
spin degreesof freedomcan therefore be treated separately. A separation of spin-freeand
spin-dependent terms is possible in the Dirac equation as well, as shown by Dyall [99].
His approach involves a changeof metric �rst suggestedby Kutzelnigg [100]
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and leadsto two coupled second-orderdi�eren tial equations
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involving the kinetic energyoperator

T̂ =
p2

2m
(1.136)

The Hamiltonian of this modi�ed Dirac equation can be split into a spin-free ~hsf
D ;V and a

spin-dependent ~hsd
D ;V part using Eq.(1.38):

(� � p) V̂ (� � p) = (� � p)
�

� � V̂ p
�

= p � V̂p � i� �
�

p � V̂ p
�

(1.137)
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We obtain

~hsf
D ;V =

2

6
6
4

V T

T
pV̂ � p
4m2c2
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7
5 ; ~hsd
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0 0

0 �
i� �
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3

7
7
7
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(1.138)

An advantage of this approach is that the functions  L and � L have the samesymmetry
and may therefore be expandedin the samebasis in a �nite basisapproximation.

1.8.2 Reduction to 2-comp onent forms

The majorit y of approximate methods are basedon a reduction of the Dirac equation to
two-component form. This is accomplishedeither by elimination of the small components
(esc)or by a unitary transformation that seeksto decouplethe largeand small components,
e.g. the Foldy-Wouthuysen(FW) transformation[101]. It hasbeenshown by Mossthat the
two approachesare equivalent for free particles, in which casethe FW - transformation is
available in closedform. We may straightforwardly generalizethis conclusion to include
external �elds [102]. Our exposition and notation follows closely that of van Lenthe et al.
[103].

Elimination of the small comp onents

Consider �rst the method of elimination of the small components. The Dirac equation
can be cast in the form

ĥD 	 = E 	 )
�

ĥ11 ĥ12

ĥ21 ĥ22

� �
� 1

� 2

�
= E

�
� 1

� 2

�
(1.139)

which may be written as a pair of coupled equations:

ĥ11� 1 + ĥ12� 2 = E� 1 (a)

ĥ21� 1 + ĥ22� 2 = E� 2 (b)
(1.140)

We solve Eq.(1.140b) for � 2

� 2 =
�

E � ĥ22

� � 1
ĥ21� 1 = �� 1 (1.141)

and insert the result into Eq.(1.140a), so that we obtain

ĥesc� 1 =
�
ĥ11 + ĥ12

�
E � ĥ22

� � 1
ĥ21

�
� 1 =

h
ĥ11 + ĥ12�

i
� 1 = E� 1 (1.142)
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Note that ĥesc is energy-dependent, but the equation may be solved iterativ ely. This does
not, however, decoupleour equations: After solving Eq.(1.142), � 1 and E may be inserted
in Eq.(1.141) to obtain � 2. A decoupling may be accomplishedby a renormalization.
This step is furthermore important in order to ensure an e�ectiv e Hamiltonian that is
Hermitian. Let 	 be normalized to unit y. We seeka normalized function of the form
� = Ô� 1 where Ô is a normalization operator:

h� j � i =
D

Ô� 1 j Ô� 1

E
= h	 j 	 i = h� 1 j � 1i + h� 2 j � 2i = 1 (1.143)

Using Eq.(1.141) the �nal term is recast as

h� 1 j � 1i + h� 2 j � 2i =
D

� 1

�
�
�(1 + � y� )

�
�
� � 1

E
(1.144)

We may therefore chooseÔ as

Ô =
p

1 + � y� (1.145)

and the Hamiltonian for � becomes

ĥef f = ÔĥescÔ� 1 =
p

1 + � y�
h
ĥ11 + ĥ12�

i 1
p

1 + � y�
(1.146)

This, then, is the e�ectiv e two-component Hamiltonian in its �nal form.

Decoupling by unitary transformation

The above decoupling may be accomplishedthrough a unitary transformation as well.

UĥD U � 1U� = EU� (1.147)

The unitary operator U may be expressedas[14]

U = Ô� 1
�

1 � y

� � 1

�
) U � 1 = Ô� 1

�
1 � � y

� 1

�
; Ô =

p
1 + � y� (1.148)

Our transformed Hamiltonian becomes

UĥD U � 1 =
�

ĥ0
11 0

0 ĥ0
22

�

= Ô� 1
�

ĥ11 + ĥ12� + � yĥ21 + � yĥ22� � ĥ11� � � yĥ21� y + ĥ21 + � yĥ22

� � ĥ11 � � ĥ21� + ĥ21 + ĥ22� � ĥ11� y � � ĥ12 � ĥ21� y + ĥ22

�
Ô� 1

(1.149)
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From this we seethat the conditions for decoupling of the two equationsare

� � ĥ11 � � ĥ12� + ĥ21 + ĥ22� = 0 (a)

� ĥ11� y + ĥ12 � � yĥ21� y + � yĥ22 = 0 (b)
(1.150)

The two equations are seento be simply Hermitian conjugatesof each others. By multi-
plying Eq.(1.150) equation with � y from the left and rearranging we obtain

� yĥ21 + � yĥ22� = � y� ĥ11 + � y� ĥ12� (1.151)

The latter relation may be usedto simplify the upper diagonal transformed Hamiltonian

ĥ0
11 = 1p

1+ � y �

h
ĥ11 + ĥ12� + � yĥ21 + � yĥ22�

i
1p

1+ � y �

=
p

1 + � y�
h
ĥ11 + ĥ12�

i
1p

1+ � y �

(1.152)

We seethat this is exactly the sameexpressionas Eq.(1.146) if we choose

� =
�

E � ĥ22

� � 1
ĥ21 (1.153)

Thus the two decoupling schemesare equivalent.

1.8.3 2-comp onent forms

The equivalenceof the two decoupling schemesmeansthat when one considersapproxi-
mations onecan choosethe schemethat is best suited to the mathematical manipulations
involved. The expressionfor the e�ectiv e two-component Hamiltonian Eq.(1.146) is some-
what deceptive in that it gives the impression that the large and small components can
be completely separated.

This is, however, only true for free particles and not in the presenceof an external
�eld. The e�ectiv e two-component Hamiltonian derived in the previous section has the
form

ĥef f = ÔĥescÔ� 1 =
p

1 + � y�
�
V̂ +

1
2m

(� � p) B (E) (� � p)
�

1
p

1 + � y�
(1.154)

where

� =
1

2mc
B (E) (� � p) (1.155)
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By a slight rearrangement we obtain

ĥef f = ĥesc �
h
ĥesc; Ô

i
Ô� 1 (1.156)

In the caseof free particles the normalization operator Ô commutes with ĥesc, so that the
secondterm in the e�ectiv e Hamiltonian Eq.(1.156) disappears. The remaining equation
reads

ĥef f � = ĥesc� = c2 (� � p)
�
E + 2mc2� � 1

(� � p) � =
p2

2m

�
1 +

E
2mc2

� � 1

� = E � (1.157)

We rearrangeto

�
E 2 + 2mc2E � c2p2�

� = 0 (1.158)

and solve for E, which gives

ĥef f
� � =

�
� Êp � mc2

�
� � = E � � � ; Êp =

p
m2c4 + c2p2 (1.159)

The sign refers to free electron (+) or positron (� ) solutions. The square root in the
operator represents no problem, sincewe can solve this equation in momentum space.

With the introduction of external �elds the normalization operator Ô doesnot in gen-
eral commute with ĥesc and the e�ectiv e two-component Hamiltonian cannot beexpressed
in an operationally useful form. It has to be approximated by somesort of perturbation
expansion from which the energy dependencecan be iterated out. The major di�cult y
with such an approach is that it tends to give operators that are ill-b ehaved. A simple
example is provided by the e�ectiv e two-component Hamiltonian for free electrons. An
expansionto secondorder in (p=mc)2 gives

ĥef f
+ = mc2

 r

1 +
� p

mc

� 2
� 1

!

=
p2

2m
�

p4

8m3c2 + O
�
� 4�

(1.160)

The �rst term in the expansionis the standard kinetic energyoperator T̂ . By comparison
with Eq.(1.28) we recognize the second term as a �rst order correction to the kinetic
energy resulting from the increaseof the electron masswith the velocity. It is therefore
commonly referred to as the mass-velocity term. There are two di�culties associated with
this expansion:

1. The expansionin (p=mc)2 is valid only for p � mc which in generaldoesnot hold
true. In particular, p ! 1 as r ! 0 in the presenceof a Coulombic potential.
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2. Even though ĥef f
+ is de�ned for free electrons only, i.e. for energiesE > 0, the

operator resulting from the secondorder expansionabove is unboundedfrom below
due to the presenceof the mass-velocity term. The inclusion of higher order terms
lead to uncontrollable oscillations.

Let us briey look at three e�ectiv e Hamiltonians for an electron in an external molecular
�eld:

1. The Pauli operator.

2. The regular approximation.

3. The Douglas-Kroll operator.

The three e�ectiv e Hamiltonians can be related to three di�eren t expansionsof the energy-
dependent operator

B (E) =
�
1 +

E � V
2mc2

� � 1

(1.161)

The Pauli-op erator

In the �rst approach B (E) is expandedusing the seriesexpansion

(1 + x1)� 1 =
1X

k=0

(� 1)k xk
1; x1 =

E � V
2mc2 (1.162)

The Pauli-operator [52] is obtained by an expansion to secondorder in x 1 and has the
form

ĥP = ĥnr + ĥmv + ĥso + ĥD ar (1.163)

The �rst term is simply the non-relativistic Hamiltonian

ĥnr = T̂ + V̂ (1.164)

whereasthe secondterm is the mass-velocity operator

ĥmv = �
p4

8m3c2 (1.165)

The third term is the spin-orbit operator [104, 105, 106, 16]

ĥso =
ie�

4m2c2 � (E � r ) (1.166)
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whereE is the molecular �eld. Its physical content can be understood by comparisonwith
Eq.(1.26). When an electron moves in the molecular �eld it experiencesa magnetic �eld
in its own rest frame, in addition to the electric �eld. The spin-orbit operator represents
the interaction of the electron spin with this magnetic �eld, as mediated by the electronic
motion. The operator couplesspin and spatial degreesof freedom and therefore makes a
separatetreatment of spin and spatial symmetry impossible.

The fourth term is the Darwin term

�
e

8m2c2 (r � E) (1.167)

and can be understood as a correction to the electric potential of the nuclei felt by the
electron if we assumethat the electron (or its charge) performsa rapid isotropic oscillatory
motion � (Zitterbewegung) [107] about its meanposition r . In order to seethis, we expand
the potential about the mean position r

� (r + � ) = � (r ) + (� � r )� (r ) +
1
2

(� � r )2� (r ) + : : : (1.168)

and take the time average11 [40]

h� (r + � )i = � (r ) + 1
2



(� � r )2

�
� (r ) + : : :

= � (r ) + 1
6



� 2

�
r 2� (r ) + : : :

(1.169)

The Darwin term arisesfrom the secondterm if we make the identi�cation



� 2�

=
3

(2mc)2 (1.170)

The extraordinary dynamics of the Dirac electron is illustrated by the fact that it has
three setsof independent dynamical variables: position r , momentum p, and velocity c� .
The latter operator is found from the Heisenberg equation of motion

dr
dt

= i
h
ĥD ; r

i
= c� (1.171)

The extra degreesof freedomaccomodates spin, and it has therefore beensuggestedthat
spin arisesfrom the Zitterbewegung, interpreted as internal charge oscillations in the elec-
tron [108, 109, 110, 111].

The Pauli-Hamiltonian is not a very satisfactorily approximation to the Dirac equation
for two reasons:

11 The �rst order time in the Taylor expansion the disappears due to the assumedisotropy of the Zitter-
bewegung.
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1. It contains the mass-velocity operator, which makes it unbounded from below and
therefore not suited for variational calculations.

2. If we make the association E � V̂ = T̂ , we seethat the expansionparameter x1 is
approximately (p=mc)2 which goes to in�nit y as r ! 0 in singular potentials and
therefore leads to the introduction of highly singular operators. In particular, the
spin-orbit operator in a Coulombic potential V̂ = � Z=r attains the form 12

ĥso =
Z

4m2c2

�
� � l
r 3

�
; (1.172)

which has an r � 3 dependence.The Darwin term becomesa Dirac delta function

ĥD ar =
�

2m2c2 � (r ) (1.173)

and thereby only contributes a positive energyshift determined by the electron den-
sity at the nuclearorigins, which is not very satisfactorily in a variational calculation.
Higher expansionsin x1 Eq.(1.162) leadsto higher singularities and unde�ned prod-
ucts of three-dimensional delta functions. Note that the situation is not alleviated
with the introduction of �nite nuclei, for even though the expansionparameter no
longer goes to in�nit y as r ! 0, it will still have very large valuesnear the nuclear
origins. This will be illustrated by a numerical example below.

Further discussionof the Pauli-operator is found in Refs. [113, 114, 4].

The regular appro ximation

Singularities in the e�ectiv e two-component Hamiltonian canbeavoided by a better choice
of expansionparameter. A regular expansionhasbeensuggestedby van Lenthe et al. [103]

B (E) =
2mc2

2mc2 � V
(1 + x2)� 1 ; x2 =

E
2mc2 � V

(1.174)

The extraction of a prefactor from B (E) meansthat the zero{order Hamiltonian in the
regular approximation (ZORA)

ĥZ ORA = V̂ + (� � p)
�

c2

2mc2 � V

�
(� � p) (1.175)

12 Expressionsfor the spin-orbit and Darwin terms with a Gaussian nuclear charge distribution has been
derived by Dyall and F�gri [112].
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is not identical to the non-relativistic Hamiltonian. Rather, it is identical to the zero{order
e�ectiv e Hamiltonian derived by Chang et al. [115]. It can be reformulated as

ĥZ ORA = V̂ + p
�

c2

2mc2 � V

�
p �

�
c2

2mc2 � V

� 2

ie� � (E � r ) (1.176)

By comparisonwith Eq.(1.166) this shows that spin-orbit interaction is present already at
the zero{order level.

We may illustrate the di�erence betweenthe two expansionsEq.(1.162)and Eq.(1.174)
by a numerical example. For an atomic stationary state the B (E) operator may be consid-
ered as an analytic function of the radial variable r [116]. This allows a direct comparison
of expansions.I have chosenthe one-electronsystemRn85+ as test example. The nuclear
charge distribution has beenmodelled by a Gaussianfunction Eq.(1.120) with exponent
� = 1:3�108, corresponding to a root-mean-squarevalue hr i = 1:1�10� 4 bohr of the nuclear
chargedistributions. Using the atomic 4-component code GRASP [117], the energyof the
1s1=2 orbital was found to be E1s1=2 = � 4154:662042H 13.

Due to the useof a �nite nucleusthe potential doesnot go to in�nit y as r ! 0, but it
doesreach a large value

V (0) = � Z � 2

r
�
�

= � 1:117� 106 (1.177)

This meansthat x1 is not a very good expansionparameter near the nuclear origin. This
is clearly displayed in Table 1.2 whereI have listed the valuesof the potential, of B (E) and
the two expansionparametersx1 and x2 at the nuclear origin and at in�nit y. In Fig.1.1
the expansion parameters are plotted as functions of r. It can be seenthat whereasx 2

goesmore or lessto zeroat the nuclear origin, x2 goesto a value that is about thirt y times
unit y. Expansionsup to order two are plotted in Figures 1.2, 1.3 and 1.4. It can be seen
that the expansionin x2 is essentially convergedalready to secondorder. Limiting values
for the two expansionsup to order �v e are given in Tables1.3 and 1.4. As a measureof
the generalconvergenceI have calculated the integral 14

� (x; n) =
Z 1

0

jB (r ; E ) � b(r ; E ; x; n)j
r

dr (1.178)

whereb(r ; E ; x; n) represents an expansionof B (E) asa function of r in terms of expansion
parameter x up to order n.

The test example clearly demonstrates the superiorit y of x 2 over x1 as expansion
parameter. The regular approximation generatesoperators that are never more singular

13 This may be compared with the value E1s1= 2 = � 4158:424082H obtained with a point nucleus
14 The integrals were evaluated using the numerical integration routine of GRASP [117].
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than the external potential. However, the mass-velocity operator appearsin the �rst order
Hamiltonian, which meansthat it is hasno lower bound and can not be usedin variational
calculations.
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Table 1.2: Limiting valuesof the potential, expansionparametersand B (E)

r = 0 r ! 1
V̂ � 1:117� 106 0:000

B(E) 3:266�10� 2 1:124
x1 29:617 � 1:106�10� 1

x2 � 3:600�10� 3 � 1:106�10� 1

Table 1.3: Expansion in x1
Order r = 0 r ! 1 �

0 1:0000 1:000 2:400� 101

1 � 2:862� 101 1:111 1:260� 102

2 8:485� 102 1:123 3:208� 103

3 � 2:513� 104 1:124 8:839� 104

4 7:443� 105 1:124 2:492� 106

5 � 2:204� 107 1:124 7:105� 107

Table 1.4: Expansion in x2
Order r = 0 r ! 1 �

0 3:254�10� 2 1:000 1:781� 101

1 3:266�10� 2 1:110 1:945
2 3:266�10� 2 1:123 2:147�10� 1

3 3:266�10� 2 1:124 2:370�10� 2

4 3:266�10� 2 1:124 2:619�10� 3

5 3:266�10� 2 1:124 2:893�10� 4
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Figure 1.1: The expansionparametersx1 Eq.(1.162) and x2 Eq.(1.174) plotted as a function of r
for the 1s1=2-orbital of Rn85+ .
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Figure 1.2: Comparison of the exact function B (E) and zero{order expansionsin x1 Eq.(1.162)
and x2 Eq.(1.174) for the 1s1=2-orbital of Rn85+ .
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Figure 1.3: Deviations of �rst order expansionsin x1 Eq.(1.162) and x2 Eq.(1.174) from the exact
B (E) for the 1s1=2-orbital of Rn85+ .
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Figure 1.4: Deviations of secondorder expansionsin x1 Eq. (1.162)) and x2 Eq. (1.174) from the
exact B (E) for the 1s1=2-orbital of Rn85+ .
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The second order Douglas-Kroll operator

In order to avoid unboundednessof approximate Hamiltonians, we realize that the free-
electron operator Êp Eq.(1.159) must be retained in closed form. Since this operator
involves the squareroot of the momentum operator, the desiredtwo-component Hamilto-
nian is therefore preferably derived in the momentum representation. The Douglas-Kroll
operator [118] may be thought of as an expansionin

x3 =
E � V

mc2 + Êp
(1.179)

We seethat Êp appears explicitly in the expansion parameter and is thereby never ex-
panded. Furthermore, x3 leadsto a regular expansionof B (E) since, in the presenceof a
Coulombic potential, p ! 1 asr ! 0. The expansiontherefore introducesno singularities
more severe than the potential. Note that to �rst order in � 2 x3 reduce to x1, but the
two expansion parameters cannot be compared directly since x 3 contains the non-local
operator Êp.

The Douglas-Kroll operator is formally derived by �rst performing a free-electron
Foldy-Wouthuysentransformation on the Dirac operator and then expandingthe resulting
operator in the external potential.The operator has the form

ĥD K = Êp � mc2 + V̂ ef f (1.180)

where the e�ectiv e potential to secondorder is given by

V̂ ef f = Â
h
V̂ + R̂V̂ R̂

i
Â + Ŵ1

�
Êp +

1
2

�
Ŵ1Êp + ÊpŴ1

� �
Ŵ1 (1.181)

Kinematical factors are

Â =

s
Êp + mc2

2Êp
(1.182)

introduced by renormalization, and

R̂ =
c(� � p)

Êp + mc2
(1.183)

which regularizespotentials since[119]

lim
p!1

R̂ = (� � n) ; n =
p
jpj

(1.184)
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Finally, Ŵ1 is an integral operator with kernel

Ŵ1
�
p; p0� = Â(p)

h
R̂(p) � R̂(p0)

i
Â(p0)

(
V̂ (p; p0)
Ep + Ep0

)

(1.185)

Here V̂ (p; p0) denotesthe Fourier transform of the external potential. The Douglas-Kroll
operator is not straightforwardly implemented dueto useof the momentum representation.
Applications to chemical systemshave beenmade feasiblethrough the work of He� et al.
[120, 15, 121].
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Chapter 2

Man y-electron systems

. . . there is an alternative formulation of the many-body problem, i.e.
how many bodies are required before we have a problem ? G. E. Brown
points out that this can be answered by a look at history. In eighteenth-
century Newtonian mechanics, the three-body problem was insoluble.
With the birth of general relativity around 1910 and quantum electrody-
namics in 1930, the two- and one-body problemsbecame insoluble. And
within modern quantum �eld theory, the problem of zero bodies (vac-
uum) is insoluble. So, if we are out after exact solutions, no bodies at
all is already too many !

R. D. MA TTUCK [122]

A many-particle system represents no many-particle problem unlessthere is somesort of
interaction betweenthe particles. For an electron in a molcular �eld, wehavesofar avoided
many-body problemsby relegatingnuclei to the role of stationary sourcesof external �elds.
With the introduction of electron-electroninteractions we have a true many-body problem
at hand, and assuch it cannot in generalbesolved analytically 1. In the relativistic domain
a further complication is that the Lorentz invariant electron-electroninteraction cannot be
expressedin a useful closedform, which meansthat approximations must be intro duced.

In this chapter we will �rst discussthe nature of the electron-electron interaction in
relativistic systems. We then construct the Hamiltonian that will be used in relativistic
calculations. To avoid overlap of material in the thesis I shall summarize the papers at
this stage. The reader is adviced to go through the papers at this point (section 2.2.3).
Before concluding, I will discussvarious features of relativistic molecular calculations.

1An exactly soluble non-relativistic two-electron atomic model is discussedin [123].
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2.1 The electron-electron in teraction

A friend of ours, Hulme, was walking many years ago with Paul [Dir ac]
in Cambridge, with something rattling in his pocket, and he said apolo-
getically, 'I am sorry about this noise. I have a bottle of aspirin in my
pocket, and I took some as I had a cold, so it is normal for it to make
some noise'. There was a silence for a while and then, so our friend
Hulme told us, Paul said, 'I suppose it makes a maximum noise when
it's just half ful l.'

R.Peierls (1972) [61]

In classicalelectrodynamics the interaction of two electrons is mediated by the electro-
magnetic �eld. In contrast, quantum electrodynamics (QED) views this interaction as
mediated by the exchange of virtual photons. The link between the two pictures is that
photons appear as quanta of the quantized electromagnetic �eld. The electrons them-
selves, together with their antiparticles (positrons), are quanta of the quantized Dirac or
electron-positron �eld. An important consequenceof �eld quantization is that it allows
the number of quanta or particles to change, as for example in the creation or annihi-
lation of electron-positron pairs. Relativistic molecular quantum mechanics in general
operate within the framework of the no-pair approximation, in which pair creation is pro-
hibited. This is equivalent to working with an unquantized Dirac �eld. Furthermore, the
electron-electron interaction is usually represented solely by the instantaneous Coulomb
interaction, which meansthat all retardation and direct magnetic e�ects are ignored. In
this section we discussthe full electron-electron interaction of QED and to what extent
the Coulomb interaction is a good approximation for our purposes.It will be seenthat a
changeof gaugealters the form of the expressionfor electron-electroninteraction in QED
already at order (Z � )2. In order to understand how this comesabout, it is instructiv e to
explore the link betweenclassicaland quantum electrodynamics.

In classicalelectrodynamics the electric E and magnetic B �elds are determined by
Maxwell's equations

r � B = 0 (a)

r � E = �
@B
@t

(b)

r � E = 4� � (c)

r � B =
1
c2

�
4� j +

@E
@t

�
(d)

(2.1)

where � is the charge density (charge per unit volume) and j is the current density (o w
of charge per unit time per unit area acrossa surface). Maxwell's equations are Lorentz
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invariant and weretherefore,prior to the advent of the theory of special relativit y, denoted
non-relativistic, sincethey did not obey the Galilean transformation Eq.(1.1). The electric
and magnetic �elds may be represented by a scalar � and vector A potential

E = �r � �
@A
@t

; B = r � A (2.2)

Whereasthe electric and magnetic �elds are uniquely determined by the scalarand vector
potentials, the inverserelation doesnot hold true. As mentioned in section1.1, the electric
and magnetic �elds are invariant under gaugetransformations

A ! A � r f ; � ! � +
@f
@t

(2.3)

where f is any scalar function of spaceand time coordinates. Speci�c choicesof gaugeare
the Coulomb gauge

r � A = 0 (2.4)

and the Feynman (Lorentz) gauge

� � A � = 0 (2.5)

The Feynman gaugeis expressedsolely in terms of 4-vectors and is therefore manifestly
Lorentz invariant.

The origin of the name "Coulomb gauge" is seenfrom the following: If we insert the
de�nitions Eq.(2.2) of the electric and magnetic �elds into Eq.(2.1c) and usethe Coulomb
gaugecondition Eq.(2.4), we obtain

r � E = �r 2� �
@(r � A )

@t
= �r 2� = 4� � (2.6)

which is simply the Poissonequation with solution

� (r ; t) =
Z

� (r 0; t)
jr � r 0j

dr 0 (2.7)

The scalar potential in Coulomb gaugeis thereby seento be the instantaneousCoulomb
potential due to a charge density � (r ; t).

In the absenceof charge and currents (� = 0; j = 0), the scalar potential is identically
zero and insertion of Eq.(2.2) in Eq.(2.1d) gives the equation

r 2A �
1
c2

@2A
@t2 = 0 (2.8)
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which describes the propagation of electromagnetic waves in free space. Solutions have
the form

A (r ; t) = A 0ei (k �r � 2� � t ) (2.9)

where� is the frequency. Direct application of the Coulomb gaugecondition Eq.(2.4) gives

k � A = 0 (2.10)

which means that the vector potential A Eq.(2.9) is perpendicular to the direction of
propagation k of the wave. The vector potential is then said to be transversal. In Coulomb
gaugethe electric �eld splits up into a transversalE ? and longitudinal Ek part de�ned by

r � E? = 0 ) E? = �
@A
@t

r � Ek = 0 ) Ek = �r �

(2.11)

The magnetic �eld B can only have a longitudinal contribution, which is explicitly shown
by Eq.(2.1a). If we now insert the de�nition of the longitudinal electric �eld E k into
Eq.(2.1c), we see,analogousto Eq.(2.6), that the longitudinal �eld is associated with the
instantaneousCoulomb interaction and is uniquely determined by the charge distribution
� . This alsodemonstratesthat in Coulomb gaugeall retardation and magnetic interactions
enter the transverse part of the electromagnetic �eld. A disadvantage of the Coulomb
gauge is that it is not Lorentz invariant, so that if one changesthe frame of reference
a gaugetransformation is in general neededin order to reestablish the gaugeconidtion
Eq.(2.4).

The link between classical and quantum electrodynamics can be summed out by a
short historic survey: At the end of the last century it was realized that the electro-
magnetic �eld could be treated as a collection of independent harmonic oscillators, each
associated with a particular frequency � . A major step towards quantum mechanics was
the postulate made by Planck in 1900 [124] stating that the energy absorbed or emitted
by such radiation oscillators werenot continuous,but appearedin quanta of h� . This pos-
tulate was necessaryin order to avoid the radiation catastrophe in blackbody radiation.
In 1905Einstein explained the photoelectric e�ect by assumingthat the electromagnetic
�eld could be consideredas a collection of independent energyquanta2 of magnitude h� .
Then, in 1927, Dirac laid the foundations of quantum electrodynamics by intro ducing
creation and annihilation operators of photons to describe the interaction of light with
matter. Finally, in 1932Bethe and Fermi described electromagnetic interaction in terms
of virtual photon exchange. This lead to expressionsfor the electron-electroninteraction in

2The word 'photon' was �rst intro duced in 1926 by G.N.Lewis [125].
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con�guration spacewhich dependson the momentum ! transferred by the exchangedpho-
ton [126, 127, 11, 128, 129, 130]. In the Coulomb gaugethe electron-electron interaction
ĝ! (1; 2) (single-photon exchange) is given by

ĝ! ;C (1; 2) =
1

r12
�

� 1 � � 2

r12
exp(i! 12r12) + (� 1 � r 1) (� 2 � r 2)

exp(i! 12r12) � 1
! 2

12r12
(2.12)

where r 12 is the interelectron distance. In the Feynman (Lorentz) gaugethe interaction is
given by

ĝ! ;F (1; 2) =
1 � � 1 � � 2

r12
exp(i! 12r12) (2.13)

The exponential part exp(i! 12r12) represents the retardation of the interaction. The
real part of the exponential leads to shifts in energy levels, whereasthe imaginary part
contribute only to the level width [11] and will be omitted in this discussion(i.e. we may
replace exp(i! 12r12) by cos(! 12r12) in the expressionsabove). In the expressionsabove
we recognize(1=r12) as the instantaneous Coulomb interaction and (� 1 � � 2) =r12 as the
instantaneousmagnetic interaction of the electron spins. We seethat in the Lorentz gauge
both the the electric and magnetic interactions are explicitly retarded, corresponding
to the exchange of both transverse and longitudinal photons. In the Coulomb gauge
only the instantaneous magnetic interaction is explicitly retarded, which corresponds to
quantization of only the transversepart of the electromagnetic �eld [131, 132]. This can
be understood from the discussionof Coulomb gaugeabove.

The momentum transfer ! of the exchangedphoton refers to one-electronstates such
that if we consider the transition probabilit y

jhC(1)D(2) jĝ! (1; 2)j A(1)B (2)i j2 (2.14)

betweentwo-electron states jA(1)B (2)i and jC(1)D(2)i , the ! is de�ned as

! = ! AC =
j"A � "C j

c
= ! B D =

j"B � "D j
c

(2.15)

where the " 's are one-electronenergies[127]. Consequently, the evaluation of Eq.(2.14)
requires the de�nition of such one-electronstates. This reects the independent-particle
approach inherent in QED. The quantization of the Dirac �eld e�ectiv ely de�nes electrons
and positrons [133, 134, 135], since the creation and annihilation operators refer to a
complete set of solutions of the Dirac equation. The "free picture" employs the complete
set of solutions of the free particle Dirac equation, whereasthe "b ound state interaction
picture" or "Furry picture" [136] use the complete set of solutions of the Dirac equation
in the presenceof some external �eld. The complete set of bound state electrons and
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positrons are related to the set of free electronsand positrons by a unitary transformation
which "dressesup" the particles.

We immediately realize that the evalution of matrix elements in con�guration space
involving the ! -dependent electron-electroninteraction becomesexceedinglydi�cult. For
single-con�guration calculations one-electron energiesmay be approximated by Koop-
mans' theorem, whereasno clear-cut de�nition of one-electronenergiesexists in a multi-
con�gurational approach [127]. We will therefore have to resort to approximations which
eliminates the ! -dependence.It turns out that the consequencesof this approximation are
not all that severe,sincecorrectionsdue to the ! -dependenceare found to contribute only
to order Z 5� 4 [137, 138]. In the limit ! ! 0 (the low-frequencylimit), the electron-electron
interaction in the Coulomb gaugereducesto the Coulomb-Breit interaction

lim
! ! 0

ĝ! ;C = ĝCoulomb + ĝB r eit (2.16)

consisting of the instantaneousCoulomb interaction

ĝCoulomb =
1

r12
(2.17)

and the Breit term [139]

ĝB r eit = �
�

� 1 � � 2

r12
+

(� 1 � r 1) (� 2 � r 2) r12

2

�
(2.18)

where r 1 and r 2 act only on r 12 and not on the wave function. The Breit term is usually
expressedas

ĝB r eit = �
�

� 1 � � 2

2r12
+

(� 1 � r 12) (� 2 � r 12)
2r 3

12

�
(2.19)

Correspondingly, the electron-electron interaction in the Feynman gauge reduce to the
Coulomb-Gaunt interaction

lim
! ! 0

ĝ! ;F = ĝCoulomb + ĝGaunt (2.20)

where the Gaunt-term [140]

ĝGaunt = �
� 1 � � 2

r12
(2.21)

represents the direct magnetic interaction of electron spins. Note that the Breit term may
be written in terms of the Gaunt term and a gauge-dependent term

ĝB r eit = ĝGaunt + ĝgauge; ĝgauge =
(� 1 � r 1) (� 2 � r 2) r12

2
(2.22)
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The Coulomb-Breit interaction is correct to order (Z � )2. In order to achieve the same
accuracyfor the low-frequencylimit of the electron-electroninteraction in Feynmangauge,
it is necessaryto add a ! -dependent term

�
1
2

! 2r12 (2.23)

Due to the appearanceof this term to order (Z � )2 , it hasbeenclaimed inconsistent to use
the Coulomb-Gaunt interaction in relativistic calculations [141, 130]. However, the choice
of what electron-electronpotential to useshould be basednot only on order analysis,but
also on what physical e�ects are included and, in the �nal instance, on the computational
demands.

Let us therefore look at the physical content of the ! -independent two-electron op-
erators. We can do so by performing a reduction of the two-electron operators to a
two-component form correct to order (Z � )2, analogousto the derivation of the Pauli-
operator Eq.(1.163) in section 1.8. The Coulomb-Breit interaction has been reduced to
two-component form by Chraplyvy et al. [142, 143, 144] by a Foldy-Wouthuysen trans-
formation, and the result is discussedin Moss [40]. The result may be combined with
the Pauli-operator to form the so-calledBreit-Pauli Hamiltonian [145]. I have redonethis
derivation for the Gaunt and gauge terms separately in order to seewhat terms in the
Breit-Pauli Hamiltonian are derived from the Gaunt term. Details about the derivation
are provided in Appendix B. Here we just state results. The instantaneous Coulomb
interaction reduceto

ĝCoulomb : 1
r 12

(a)

�
1

4m2c2r 3
12

[� 1 � (r 12 � p1) � � 2 � (r 12 � p2)] (b)

�
1

m2c2 � � (r 12) (c)

(2.24)

We expect the terms generatedby the instantaneousCoulomb interaction to be analogous
to the terms in the Pauli-operator Eq.(1.163) depending on the nuclear potential sincewe
have simply replaced this potential by the corresponding potential from an electron. We
do indeed �nd the expected analogy and can interpret the various terms as follows:

(a) Coulomb interaction

(b) Spin-own orbit interaction:
the spin-orbit interaction of a electron generated by the electric �eld of another
electron.

(c) Darwin-t ype correction to the Coulomb term:
a correction to the Coulomb interaction Eq.(2.24a) due to Zitterbewegung.



64 Ch.2 Man y-electron systems

The Gaunt-term reduceto

ĝGaunt : �
1

m2c2r12
(p1 � p2) (a)

+
1

2m2c2r 3
12

[� 1 � (r 12 � p2) � � 2 � (r 12 � p1)] (b)

+
1

4m2c2

�
r � 3

12 (� 1 � � 2) � 3r � 5
12 (� 1 � r 12) (� 2 � r 12)

�
(c)

�
2�

3m2c2 (� 1 � � 2) � (r 12) (d)

�
1

2m2c2r 3
12

(r 12 � r 12) (e)

�
1

m2c2 � � (r 12) (f )

(2.25)

and the gauge-termcontributes

ĝgauge : �
1

2m2c2 (p1 � r 1) (p2 � r 2) r12 (a)

+
1

2m2c2r 3
12

(r 12 � r 12) (b)

+
1

m2c2 � � (r 12) (c)

(2.26)

By adding contributions from the two terms we obtain the reducedBreit term

ĝB r eit : �
1

m2c2

�
r � 1

12 (p1 � p2) +
1
2

(p1 � r 1) (p2 � r 2) r12

�
(a)

+
1

2m2c2r 3
12

[� 1 � (r 12 � p2) � � 2 � (r 12 � p1)] (b)

+
1

4m2c2

�
r � 3

12 (� 1 � � 2) � 3r � 5
12 (� 1 � r 12) (� 2 � r 12)

�
(d)

�
2�

3m2c2 (� 1 � � 2) � (r 12) (e)

(2.27)

where the individual terms are interpreted as folllows

(a) Orbit-orbit interaction:
This term correspondsexactly to the Breit term Eq.(2.18) if wemakethe substitution

� !
p

mc
(2.28)
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This correspondsto the transition from the relativistic velocity operator c� Eq.(1.171)
to the corresponding non-relativistic operator (p=m). The orbit-orbit term repre-
sents the classicalretardation correction to the Coulomb interaction in the Coulomb
gauge. It is readily rearrangedto its more conventional form [146]

= �
1

m2c2

�
p1 � p2

2r12
+

(p1 � r 12) (p2 � r 12)
2r 3

12

�
(2.29)

The �rst term, which is derived from the Gaunt term, may be interpreted as a
current-current interaction. The secondterm stemsfrom ĝgauge and is consequently
gauge-dependent.

(b) Spin-other orbit interaction:
the interaction of the spin of an electron with the magnetic �eld generatedby the
current of another electron. There is no analogousterm arising from the molecular
�eld, sinceteh nuclei are assumedto be a stationary sources.

(c) Spin-spin interaction:
direct dipolar interaction betweentwo spins.

(d) Fermi-contact interaction:
it can be regardedas a �nite-size correction to the spin-spin interaction

In conclusion,we seethat with the exception of the gauge-dependent term Eq.(2.26a),
which contributes to the orbit-orbit interaction, the whole physical content of the Breit
term is provided by the Gaunt term as well. The Gaunt term in addition gives rise to
two terms. The �rst Eq.(2.25f) corresponds to a Darwin-t ype correction of the Coulomb
interaction, whereasthe other has a lessstraightforward physical interpretation. The two
extra terms arecancelledby corresponding terms from ĝgauge. It shouldbenoted that none
of the extra terms are spin-dependent, which meansthat the Coulomb-Gaunt interaction
will give the total spin-orbit interaction correct to order (Z � )2. In general,the Gaunt term
accounts for about 90%of the Breit term in atomic calculations and shifts the total energy
upwards, whereas the gauge term lowers the total energy [147]. Multicon�gurational
calculations on helium-like ions [127] has shown that at around Z = 50 the correlation
energyfrom the Gaunt term becomeslarger than the correlation from the Coulomb term.
However, the Gaunt term appearsto be of importance only near nuclei [126], which makes
the Gaunt interaction mainly localized to atoms, so that it is not expectedto signi�cantly
change molecular properties such as bond lengths. Our Dirac-Fock calculations on PtH
(paper IV) and previous calculations on hydrides of group IVA by Visser et al.[148] show
that the Gaunt term has a negligible e�ect on molecular bond lengths. Visser et al. [148]
found that the Gaunt term favors bond expansion,yet in PbH4 the expansionis only 0.17
pm.
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From the discussionabove, wecanconcludeasfollows: The Coulomb interaction, which
may be regarded as the zeroth order term of an expansion in (Z � )2 of the full electron-
electron interaction, appears to be su�cien t for the calculation of molecular potential
surfaces. Corrections of order (Z � )2 to the Coulomb-interaction are largely atomic in
nature and needonly be consideredwhen properties dependent on the electronic density
in the nuclear region are studied. The Gaunt term alone ensurescorrect contributions
from electronic potentials to the total spin-orbit interaction to order (Z � )2 and may
therefore be included in accurate calculations of spin-orbit splittings. The Gaunt term is
straightforwardly implemented in a �nite basisapproximation, sinceit reducesto ordinary
Coulomb repulsion integrals in a scalar basis. The gauge-dependent term, on the other
hand, leadsto more complicated two-electron integrals.
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2.2 Relativistic molecular calculations

There is something fascinating about science. One gets such wholesale
returns of conjecture out of such a triing investment of fact.

M.TW AIN (1874) [149]

Theoreticians get such amazing returns from such a small investment
of fact combined with a few hours on a Cray Y/MP.

I.M.Klotz (1990)

2.2.1 The Dirac-Coulom b Hamiltonian

In this section we arrive at the main goal of our study, namely relativistic molecular
calculations. Ideally we would like a Lorentz invariant description of molecular systems,
but from the discussionin the previous sections, it is clear that such a description can
only be approximate. Let us briey review the approximations involved.

First, the Born-Oppenheimerapproximation is inherently incompatible with the the-
ory of special relativit y since it singlesout a preferred referenceframe, namely the frame
in which nuclei can be treated as stationary sourcesof external �elds. Relativistic correc-
tions to the nuclear motion are, however, expected to be small [150]. The advantage of
the Born-Oppenheimerapproximation is that it reducesthe complexity of the molecular
description and allows us to focusour attention on the electronic degreesof freedom. The
eigenvalues of the electronic Hamiltonian de�ned by the Born-Oppenheimer approxima-
tion are assumedto vary smoothly as a function of nuclear coordinates. This leadsto the
concept of molecular potential energysurfaces.

Second, we have neglected all hyper�ne e�ects, that is we have neglected nuclear
spins. As discussedin section 1.7, this leads to a time reversal symmetric Hamiltonian.
The hyper�ne e�ects also include e�ects of a possiblenuclear electric quadrupolemoment.
We can model this, for example by inclusion of Gaussiand functions in a �nite nucleus
model.

Third, the description of even a single electron in the molecular �eld leadsto a many-
body problem due to the possiblecreation of virtual electron-positron pairs. The proper
treatment of the problem canonly beobtained within the framework of QED, which allows
the number of particles in the systemto vary. Weavoid working with the full mathematical
machinery of QED by invoking the no-pair approximation, that is we neglect all pair
creations. This meansthat we stay within the framework of Dirac's hole theory with the
Dirac sea of negative energy electrons at all times completely �lled. It corresponds to
working with classical �elds and implies neglect of QED e�ects, such as self energy and
vacuum polarization, which represent the interaction of the electron with the zero-point
uctuations of the quantized electromagneticand Dirac �elds, respectively [87].

Fourth, the electron-electroninteraction can be handled correctly only to order (Z � ) 2
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if we want to avoid ! -dependent terms. Note that this approximation is closely tied
to the no-pair approximation. If we allow virtual pair creation, we must take into ac-
count electron-positron interaction in terms of virtual photon exchange,and this leadsto
non-negligible ! -terms of order 2mc. The level of accuracy obtained with the truncated
electron-electroninteraction is, however, expectedto be su�cien t for all relevant chemical
properties. In fact, for the determination of molecular potential energy surfaces,experi-
enceso far [148, 31] indicate that the Coulomb interaction alone appears to provide an
adequatedescription.

We thereforechoosethe Dir ac-CoulombHamiltonian asthe starting point for relativis-
tic molecular calculations, but may consider inclusion of the Gaunt-term for the study of
properties that depend on the electron density near the nuclei, or when we want very
accurate spin-orbit splittings. The Dirac-Coulomb Hamiltonian for a molecular systemof
n electrons in the �eld of N nuclei has the form

ĤD C =
nX

i =1

ĥD ;V (i ) +
nX

i<j

ĝCoulomb(i; j ) + V̂N � N (2.30)

The �rst term is a sum over one-electronDirac operators in the molecular �eld (seesection
1.7)

ĥD ;V = � 0mc2 + c(� � p) + V̂e� N (2.31)

The second term describes the electron-electron interaction in terms of the instanta-
neous Coulomb interaction. Even though this operator has the same operator form as
the electron-electroninteraction in non-relativistic theory, its physical content is di�eren t
sinceit includes spin-own orbit interactions and Darwin-t ype corrections to the Coulomb
interaction, as seenin section 2.1. The last term is the Coulomb interaction of nuclei.

V̂N � N =
NX

I <J

Z I ZJ

r I J
(2.32)

The Dirac-Coulomb Hamiltonian is an intuitiv e extension of the non-relativistic elec-
tronic Hamiltonian , but the validit y of ĤD C and the resulting Dirac-Coulomb equation

ĤD C 	 = E 	 (2.33)

has beensurrounded by considerablecontroversy. We shall return to this in section 2.2.6.
Let us �rst note, however, that the inclusion of the electron-electron interaction enforces
a �fth approximation in our description of molecular systems,since the Dirac-Coulomb
equation represents a many-body problem and has no analytical solutions. From a math-
ematician's point of view the Dirac-Coulomb equation is nightmarish, sinceit constitutes
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a set of multiv ariable coupled �rst order di�eren tial equations with one singularity for
every pair of particles in the system. Yet we can provide approximate solutions to it of
high accuracy. The key to successlies in the use of physical-chemical understanding in
the construction of approximate solutions.

2.2.2 The variational metho d

Approximate solutions to the Dirac-Coulomb equation can be obtained by perturbation
theory or by the variational method. We shall considerthe latter method. The basic idea
of the variational method is to introduce a trial function furnished with parameters that
can be varied so as to obtain the best possibleapproximate solution within the parameter
space. The parametrization of the trial function leads to a parametrization of its energy,
de�ned as the expectation value of the Dirac-Coulomb Hamiltonian. Approximations to
the exact eigenfunctionsof the Hamiltonian are found as stationary valuesof the energy
in the parameter space[151]. Note that if the variational parametersare intro duced in a
non-linear manner, the reciprocal relation does not hold true, so that a stationary value
of the energymay correspond to a physically unacceptablesolution of the Dirac-Coulomb
equation [152]. Let usconsiderthe generalform of the trial function in molecularelectronic
structure theory.

The basic building blocks for approximativ e wave functions are molecular orbitals
(MOs) and electronic con�gurations. They can be introducedasfollows: If we turn o� the
electron-electron interaction, the electronic Hamiltonian reduce to a sum of one-electron
Dirac operators,and the wave function may bewritten asa Hartree product of one-electron
molecular 4-spinors

� =
nY

i =1

 i (r i ) (2.34)

The spinors are chosenfrom the complete set f  i g of orthonormal solutions to the corre-
sponding Dirac equation in the molecular �eld. We shall refer to any set of one-electron
functions as our 1-particle basis and denote the individual one-electronfunctions molec-
ular orbitals (MO). Physically Eq.(2.34) is, however, not an acceptable many-electron
wave function, since it does not obey the Pauli-principle, which states that the many-
electron wave function should changesign under the permutation of any pair of electrons
(fermions). We can remedy the situation by antisymmetrizing the wave function, for
exampleby writing it as a Slater-determinant

� =
1

p
n!

�
�
�
�
�
�
�
�
�

 1(1)  2(1) : : :  n (1)
 1(2)  2(2) : : :  n (2)
...

...
. . .

...
 1(n)  2(n) : : :  n (n)

�
�
�
�
�
�
�
�
�

(2.35)
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of orthonormal molecular orbitals

h i j  j i = � ij (2.36)

The Slater-determinant represents a particular electronic con�guration, namely the set of
molecular orbitals appearing in the determinant. When the electron-electron interaction
is turned on, it is no longer possible to separate the electronic degreesof freedom, and
the exact electronic wave function can no longer be expressedin terms of a single Slater-
determinant. It can, however, be expandedin all possibleSlater-determinants that can be
generatedfrom the complete 1-particle basis:

	 =
X

i

ci � i (2.37)

The exact solution is thereby de�ned in terms of complete 1- and n-particle bases,where
the set f � i g of Slater-determinants in Eq.(2.37) constitute the n-particle basis. We may
therefore seekapproximate solutions of the Dirac-Coulomb equation in the spaceof trun-
cated 1 and n-particle bases. The search for stationary energiesthen corresponds to
separaterotations within the 1-particle basisand within the n-particle basis.

The simplest variational approach is to (in the closed-shellcase)choosea singleSlater
determinant Eq.(2.35) asthe trial function. This forms the basisfor the Hartree-Fock (HF)
method in non-relativistic theory and the Dirac-Fock (DF) method in relativistic theory.
Theseare independent particle models that view the electron as moving independently in
the �eld of the nuclei and the average�eld of the other electrons. The independent particle
model usually provides an adequatedescription of molecular structure at the equilibrium
geometry, but fails in situations where degeneraciesor near-degeneraciesof con�gura-
tions occur. Near-degeneraciestypically arise in bond breaking and bond formation, in
open-shelland excited states. In relativistic molecules,additional near-degeneraciesmay
be introduced by the �ne structure of the spin-orbit splitting. Such systemsrequire a
multicon�gurational approach. The most compact and exible description is provided
by the Multi-Con�gurational Self-Consistent Field (MCSCF) method, which allows both
con�gurational and orbital parametersto vary.

At this point, it will be convenient to summarize the papers included in the thesis in
order to avoid overlap in the presentation.
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2.2.3 Summary of pap ers

� PAPER I:

T. Saue,T.Helgaker, K. F�gri and O.Gropen:
Principles of direct 4-comp onent relativistic SCF:

Application to dih ydrides of group 16
Manuscript.

In this paper we present the theory of direct 4-component SCF calculations basedon a
quaternion formulation of the Dirac-Fock equations. In the closed-shellDirac-Fock model,
bound electronic states of the Dirac-Coulomb Hamiltonian Eq.(2.30) are approximated
by a trial function in the form of a single Slater-determinant Eq.(2.35). In the �nite
basisapproximation we expand each component of the molecular 4-spinorsin a real (AO)
basis We seekstationary values of the total energy under the constraint of orthonormal
molecular orbitals. As in the non-relativistic theory, this leads to a pseudoeigenvalue
equation in terms of the expansion coe�cien ts c. We proceedby showing that due to
time reversal symmetry we may reduce the Dirac-Fock equations to a quaternion form
Eq.(1.101)

QF Qc =
h
F �� + F �� ��

i h
c� � c� � ��

i
= " QS

h
c� � c� � ��

i
= " QS Qc (2.38)

This reducesthe operation count and memory requirement for the construction of the
Fock matrix by a factor two. The quaternion formalism furthermore brings the two-
electron Fock matrix onto a form that is readily incorporated into existing software for
non-relativistic calculations. By a quaternion diagonalization of the Fock matrix weobtain
well-de�ned Kramers partners, which allows e�cien t use of time reversal symmetry in
post-DF applications.

The quaternion Dirac-Fock equationsare solved iterativ ely by the direct SCF method,
in which two-electron integrals are regeneratedin each SCF iteration. This eliminates the
frequent problemswith disk storageand I/O load in the standard Dirac-Fock approach and
makes DF-calculations on workstations feasible. Integral batches are prescreenedbased
on the di�eren tial density matrix approach. The integral presecreeningis supplemented
by separatescreeningof Coulomb and exchange contributions to the Fock matrix. The
SCF convergenceis acceleratedby the implementation of the DI IS method.

We have applied the 4-component direct SCF method to the dihydrides of tellurium,
polonium and eka-polonium (element 116). We �nd the expected bond shortening due
to relativit y in H2Te and H2Po. In the dihydride of element 116 we observe, however, a
dramatic bond expansiondue to the extreme spin-orbit splitting of the 7p orbital in the
eka-polonium atom. This spin-orbit e�ect is further analyzed in paper V.
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� PAPER I I:

T. Saueand H.J.Aa. Jensen:
Quaternion symmetry in relativistic molecular calculations:

I. The Dirac-F ock metho d
Submitted to J. Chem. Phys.

In this paper we considerthe useof the full symmetry group of the Dirac-Coulomb Hamil-
tonian to reduce the computational e�ort in the Dirac-Fock method. The full symmetry
group consists of all operators, unitary or antiunitary , that commute with the Dirac-
Coulomb Hamiltonian. In practice, we obtain the full symmetry group as the direct
product of the time reversal operator and the molecular point group. Due to the presence
of antiunitary operators we can no longer form true matrix representations of the group.
It is, however, still possibleto establish a systemof matrices, a corepresentation that can
be broken down to irreducible forms. We denote the irreducible forms ircops.

We limit spatial symmetry to D2h and subgroups,which we collectively denotebinary
groups, since they constitute the set of all single point groups with no elements of order
higher than two. The binary groups can be classi�ed as quaternion, complex and real
basedon the distribution of Kramers partners among the fermion irreps of the molecular
double point group:

1. Quaternion groups: C1, Ci

2. Complex groups: Cs, C2, C2h

3. Real groups: C2v , D2, D2h

In the caseof real (complex) groups the Fock matrix in a Kramers restricted MO-basis
automatically reduce to a real (complex) matrix. It is, however, the construction of
the Fock matrix in AO-basis that constitute the time-consuming step in a Dirac-Fock
calculation. We show that by a simple quaternion transformation of the real basis, it
is possibleto obtain the samematrix reduction in the AO-basis as well. The symmetry
scheme amounts to a simple scheme of phase insertion that require virtually no extra
computational e�ort, but leads to considerablecomputational gains, as is demonstrated
by a numerical example.
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� PAPER I I I:

H.J.Aa.Jensen,K.G.Dyall, T.Saue and K.F�gri:
Relativistic 4-comp onent Multi-Con�gurational Self-Consisten t Field

Theory for Molecules: Formalism
Accepted for publication in J.Chem.Phys.

In this paper we outline the most generalmulti-con�gurational approach to relativis-
tic molecular calculations, namely the multi-con�gurational self-consistent �eld (MCSCF)
method in which both con�gurational and orbital parametersare allowed to vary. We em-
ploy the secondquantization formalism whereby the Dirac-Coulomb Hamiltonian Eq.(2.30)
is expressedby

ĤD C =
X

pq

D
p

�
�
�ĥD ;V

�
�
� q

E
pyq +

1
2

X

pqr s

D
pq

�
�
�ĝCoulomb

�
�
� r s

E
pyr ysq (2.39)

where py and p are creation and annihilation operators for 4-spinor p. Time reversal
symmetry is enforced by transformation to Kramers restricted basis. This leads to the
introduction of Kramers single X �

pq and double x � ;�
pq;r s replacement operators.

The parametrized Kramers restricted MCSCF wave function has the form

jM C(� ; � )i = exp(� �̂ ) j� i (2.40)

where exp(� �̂ ) is an exponential parametrization of orbital rotations and where the con-
�gurational variational parameters� describea correction vector orthogonal to the current
con�guration expansion.

MCSCF methods require secondorder optimization methods for controllable conver-
gence. This implies knowledge of the Hessian(secondderivative) matrix (or approxima-
tions to it). Key ingredients in the formalism that make large con�guration expansions
feasibleare:

1. The unitary parametrization exp(� �̂ ) of the orbital optimization ensuresthe or-
thonormalit y of molecular orbitals, so that unconstrained optimization techniques
can be used.

2. The Hessianmatrix times a vector is calculated directly by iterativ e techniques so
that the individual elements of the matrix neednot be known.

3. The restricted step secondorder optimization techniques is a robust technique for
sharp and well-controllable convergencein relatively few iterations.
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A major di�erence with the corresponding non-relativistic method is the replacement
of the non-relativistic minimization principle with a minimax principle for ground state
optimization.



2.2 Relativistic molecular calculations 75

� PAPER IV:

L.Visscher, T.Saue, W.C.Nieuwpoort, K.F�gri and O.Gropen:
The electronic structure of the PtH molecule:

Fully relativistic con�guration in teraction calculations
of the ground and excited states
J.Chem.Phys. 99 (1993) 6704{6715

In this paper we investigatethe lower �v estatesof the the open-shellmoleculeplatinum
hydride by 4-component con�guration interaction (CI) calculations. We have used the
MOLFDIR [22] package for relativistic molecular calculations. The CI program is based
on the restricted active space(RAS) formalism. The desiredroots of the CI Hamiltonian
matrix are found by iterativ e techniques.

The characteristics of the �v e lower states are largely dominated by the spin-orbit
splitting of the 5d orbital in the platinum atom, which is of the order 10 000 cm� 1.
Thus we �nd three lower states arising from the splitting of a 5d4

3=25d5
5=2� 2

1=2 electronic

con�guration in the molecular �eld and two upper states arising from the 5d3
3=25d6

5=2� 2
1=2

con�guration. The bonding is to a large extent a � (s{s) bond, but with somecontribution
from the platinum 5d orbitals. The e�ect of the Gaunt term was investigated at the
SCF level by including it perturbativ ely, and was found to be negligible for spectroscopic
properties of PtH. The main correlation e�ects stem from the angular correlation of the 5d
orbitals and lead to bond shortageson the order 4 pm and an increasein the dissociation
energy of about 0.5 eV. The high stabilit y of the Pt-H bond can be explained by the
relativistic stabilization of the 6s orbital.



76 Ch.2 Man y-electron systems

� PAPER V:

T.Saue, K.F�gri and O.Gropen:
Relativistic e�ects on the bonding of heavy and sup erheavy hydrogen halides

Submitted to Phys.Rev.Lett.

In this paper we have investigated bonding in heavy and superheavy hydrogen halides
by direct 4-component SCF calculations using the DIRA C code. We �nd a relativistic
bond contraction of 0.6 pm in hydrogen iodide. In hydrogen astatide there is, however,
a slight bond expansionof 0.3 pm, and in the hydride of eka-atstatine (element 117) we
�nd a huge bond expansionof 12.9 pm.

We have analyzed the bonding in the three moleculesby projecting the molecular
orbitals down onto the vectors of the halide ions. It then becomesclear that the huge
bond expansionobserved for the hydride of eka-astatine is due to the extreme spin-orbit
splitting of the atomic 7p orbital. The bonding in the corresponding hydride is thereby
dominated by the radially di�use 7p3=2 orbital.



2.2 Relativistic molecular calculations 77

2.2.4 The small comp onent densit y

The small components are denoted "small" becausethey tend towards zero for electronic
solutions in the non-relativistic limit c ! 1 , as discussedin section 1.8. In this section
I consider the smallnessof the small components for the �nite speed of light. I have
calculated the small component density for the elements Z = 1 to Z = 103 using the
numerical 4-component atomic code GRASP [117]. The results are presented in Tab.2.2.4
and graphically in Fig.2.1. It is seenthat the small components contribute an electrononly
for the heaviest element Z = 103 in the series.Also, we note from Fig.2.1 that there is no
sign of periodic structure in the small component density as a function of atomic number.
Rather we seea smooth curve that is readily �tted by a low-order polynomial of the atomic
number. This indicates that the small component density is largely located to the nuclear
region, whereit experiencesthe almost unscreenednuclear charge. I have investigatedthis
further by plotting the small component density for the radon atom Z = 86 in Fig.2.2.
It shows that the small component density is approximately limited to a region within
0.2 bohrs from the nucleus. For comparison, the radial expectation values of the atomic
spinors with n = 2 are found in the region 0.1 { 0.2 bohrs. In Tab.2.2.4the accumulation
of the small component density is listed for the radon atom. It shows that the outer shell
(n = 6) of the radon atom accounts for only 0.13 % of the total small component density
of 0.62805electrons.

The small component density is seento be highly localized and thereby atomic in na-
ture, so that we do not expect the appreciable changesin the small component density
when the atom enters a molecule. This suggeststhat the interaction of small component
densities at di�eren t atomic centers may be modelled by Coulombic repulsion. Visscher
[153] found that the neglect of SS integrals in a relativistic calculation on At 2 using the
4-component version of coupled-cluster singlesand doubles with perturbativ e treatment
of triples CCSD(T) [32] led to an error in the bond length of 10.8 pm comparedto a cal-
culation with all integrals included. He was,however, able to correct this error completely
by representing the contribution from the SSintegrals by a Coulombic interaction of point
charges Eq.2.32 using the small component density of the astatine atom. For hydrides
of heavy atoms, the neglect of SS integrals appears to have negligible inuence on bond
lengths [154, 155], but this is due to the fact that the small component density for the
hydrogen atom is for all purposesequal to zero, so that there is no Coulombic repulsion
from the SSintegrals.
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Table 2.1: Total small component density for all elements from Z = 1 to Z = 103. The numbers
marked with an asterisk have beenobtained by interpolation.

1 H 0:0000 22 Ti 0:0227 43 Tc 0:1141 64 Gd 0:3003� 85 At 0:6097
2 He 0:0001 23 V 0:0252 44 Ru 0:1206 65 Tb 0:3118 86 Rn 0:6281
3 Li 0:0002 24 Cr 0:0279 45 Pd 0:1273� 66 Dy 0:3238 87 Fr 0:6468
4 Be 0:0004 25 Mn 0:0308 46 Pd 0:1343 67 Ho 0:3360 88 Ra 0:6659
5 B 0:0007 26 Fe 0:0339 47 Ag 0:1415 68 Er 0:3485 89 Ac 0:6854
6 C 0:0010 27 Co 0:0371 48 Cd 0:1489 69 Tm 0:3614 90 Th 0:7053
7 N 0:0014 28 Ni 0:0405 49 In 0:1566 70 Yb 0:3746� 91 Pa 0:7256
8 O 0:0020 29 Cu 0:0440 50 Sn 0:1644 71 Lu 0:3879 92 U 0:7464�
9 F 0:0026 30 Zn 0:0478 51 Sb 0:1725 72 Hf 0:4017 93 Np 0:7675�

10 Ne 0:0034 31 Ga 0:0517 52 Te 0:1809 73 Ta 0:4157 94 Pu 0:7888
11 Na 0:0043 32 Ge 0:0558 53 I 0:1895 74 W 0:4301 95 Am 0:8107
12 Mg 0:0053 33 As 0:0602 54 Xe 0:1983 75 Re 0:4447 96 Cm 0:8332�
13 Al 0:0065 34 Se 0:0647 55 Cs 0:2073 76 Os 0:4597 97 Bk 0:8560�
14 Si 0:0077 35 Br 0:0694 56 Ba 0:2166 77 Ir 0:4750 98 Cf 0:8790
15 P 0:0091 36 Kr 0:0743 57 La 0:2261 78 Pt 0:4907 99 Es 0:9027
16 S 0:0106 37 Rb 0:0793 58 Ce 0:2359� 79 Au 0:5067 100 Fm 0:9268
17 Cl 0:0123 38 Sr 0:0846 59 Pr 0:2459 80 Hg 0:5230 101 Md 0:9514
18 Ar 0:0141 39 Y 0:0901 60 Nd 0:2563 81 Tl 0:5396 102 No 0:9765
19 K 0:0160 40 Zr 0:0958 61 Pm 0:2668 82 Pb 0:5566 103 Lr 1:0020
20 Ca 0:0181 41 Nb 0:1017 62 Sm 0:2777� 83 Bi 0:5739
21 Sc 0:0203 42 Mo 0:1078 63 Eu 0:2888 84 Po 0:5916
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Table 2.2: Accumulation of small component density in the radon atom.

Individual contributions Accumulated density
1s1=2 :1089 .21789 ( 34.69%)
2s1=2 :2537� 10� 1 .26864 ( 42.77%)
2p1=2 :2544� 10� 1 .31952 ( 50.87%)
2p3=2 :2206� 10� 1 .40777 ( 64.93%)
3s1=2 :8629� 10� 2 .42503 ( 67.67%)
3p1=2 :8564� 10� 2 .44216 ( 70.40%)
3p3=2 :7592� 10� 2 .47253 ( 75.24%)
3d3=2 :7449� 10� 2 .50231 ( 79.98%)
3d5=2 :7191� 10� 2 .54546 ( 86.85%)
4s1=2 :3011� 10� 2 .55148 ( 87.81%)
4p1=2 :2913� 10� 2 .55731 ( 88.74%)
4p3=2 :2568� 10� 2 .56758 ( 90.37%)
4d3=2 :2355� 10� 2 .57700 ( 91.87%)
4d5=2 :2261� 10� 2 .59057 ( 94.03%)
4f5=2 :1897� 10� 2 .60195 ( 95.84%)
4f7=2 :1858� 10� 2 .61682 ( 98.21%)
5s1=2 :8433� 10� 3 .61850 ( 98.48%)
5p1=2 :7607� 10� 3 .62002 ( 98.72%)
5p3=2 :6503� 10� 3 .62262 ( 99.14%)
5d3=2 :4733� 10� 3 .62452 (99.44%)
5d5=2 :4456� 10� 3 .62719 ( 99.86%)
6s1=2 :1531� 10� 3 .62750 ( 99.91%)
6p1=2 :1118� 10� 3 .62772 ( 99.95%)
6p3=2 :8238� 10� 4 .62805 (100.00%)
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Figure 2.1: The total small component density as a function of atomic number.
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Figure 2.2: Small component density of the radon atom (Z = 86).
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2.2.5 "Unph ysical" solutions

In paper I we have discussedbasis sets in relativistic molecular calculations. Due to
their mutual coupling Eq.1.130, the large and small components have to be expandedin
separatebasissets. It is customary to relate the large

�
� L

	
and small

�
� S

	
basissetsby

the kinetic balancecondition [26, 27]
�

� S	
=

�
(� � p) � L 	

(2.41)

which represents the non-relativistic limit of the exact coupling. In scalar basis sets,
the kinetic balance prescription in general leads to a small component basis set that is
about twice the sizeof the corresponding large component basisset. Charge conjugation
symmetry (section1.6) leadsto a one-to-onematching of electronicand positronic solutions
of the free particle Dirac equation. Obviously such a matching is not possiblein a �nite
basisapproximation to the freeparticle equation if the largeand small component basesare
of di�eren t sizes.Accordingly, the �nite basissolutions to the free particle Dirac equation
will contain positronic solutions with no electronic counterpart. From charge conjugation
symmetry it follows that they must have eigenvalues of exactly � 2mc2 ( = � 37557:75
Hartrees) in the non-relativistic energy scale. They have no contribution from the large
components and have therefore beencharacterized as unphysical. In this section we show
that the "unphysical" solutions have a very physical behaviour which shedslight on the
physicsof positrons and on the Dirac-Fock method itself. We shall furthermore show how
they can be deleted from the molecular orbital (MO) spaceby a simple method to obtain
a one-to-onematching of basissets.

The "unphysical" solutions have only rest mass and no kinetic energy. From the
uncertainity principle they must therefore be delocalized over all space, to the extent
that this is possiblein the �nite basisapproximation. Consider now the behaviour of the
"unphysical" solutions in the presenceof an atom. Due to their extreme delocalization,
the "unphysical" solutions seeno atomic structure, only a point in spacewith charge
equal to the total charge of the atom. A positive charge is repulsive and will therefore
only introduce a downward shift in the energyof the positron. A negative charge will be
attractiv e and introduce bound positronic states.

I have explored this picture by a seriesof �nite basis calculations. First I solved the
Dirac equation for hydrogenlike atoms of variable nuclear chargesin a large uncontracted
Cartesian Gaussian basis. The large component basis (22s17p14d6f) consisted of 217
functions, and the small component basis (17s36p23d14f6g),generated by unrestricted
kinetic balance (see paper I), consisted of 493 functions. In Fig.2.3 I have plotted the
eigenvalue of the upper positronic solution as a function of nuclear charge. A perfect
linear �t is observed, with an intercept at Z = 0 at approximately � 2mc2. The result is
therefore in complete agreement with the picture outlined above.
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Figure 2.3: The orbital energyof the upper positronic �nite basissolution to the Dirac equation
for hydrogen-like atoms plotted as a function of nuclear charge Z.
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Figure 2.4: The orbital energy of the upper positronic �nite basis Dirac-Fock solutions for the
calsiumatom wherethe total chargeof the systemis varied by changingthe number of the electrons.
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Figure 2.5: The orbital energy of the upper positronic �nite basis Dirac-Fock solutions for 10-
electron systems where the total charge of the system is varied by varying the nuclear charge
Z.
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Figure 2.6: The orbital energy of the upper positronic �nite basis Dirac-Fock solutions for the
neon atom where the total charge of the system is varied by changing the number of electrons.
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In order to test the sensitivity of the "unphysical" positronic eigenvalues to atomic
structure, I performedthree seriesof Dirac-Fock calculations in an uncontracted Cartesian
Gaussianbasis. The largecomponent basis(16s11p)consistedof 49functions and the small
component basis(11s16p11d),generatedby unrestricted kinetic balance,consistedof 114
functions. The �rst seriesof calculations were performed on the calsium-atom (Z = 20)
with variable electron occupation so as to vary the total charge of the system. The upper
positronic eigenvalue is plotted as a function of total charge in Fig.2.4. Again we observe
a linear �t, which clearly demonstratesthat the delocalized positronic solution e�ectiv ely
seesthe calcium atom as a single point charge.

An important point regarding the Dirac-Fock (and Hartree-Fock) method is seenfrom
Fig.2.4. The total chargeof the systemis the sum of the nuclear chargeand the chargesof
the electrons in the system. A one-electroncalcium atom accordingly has a total charge
of +19. We solve this system by diagonalising the matrix representation of the one-
electron Dirac Hamiltonian in the presenceof the external �eld represented by a nucleus
of Z = 20. It turns out, however, that the upper positronic solution has an eigenvalue
that from the linear �t in Fig.2.4 correspond to an e�ectiv e charge of +20 and not +19.
We can understand how this comesabout, sincethe one-electronDirac Hamiltonian does
not contain any potential term stemming from a singleelectron. From the point of view of
the Dirac-Fock method, it represents a zero-electronsystem. In the Dirac-Fock equations
for an n-electron system, the occupied Dirac-Fock orbitals describe electrons moving in
the average �eld of the n � 1 other electrons. On the other hand, the virtual orbitals,
electronic or positronic, experiencethe averagepotential of all n electrons 3. The question
of how to obtain the positronic solutions to the systemcorresponding to total charge +19
is food for thoughts.

In order to further test the insensitivity of the "unphysical" solutions to the atomic
structure, I �xed the number of electronsin the systemto ten and then varied the nuclear
charge. The upper positronic eigenvalue is plotted as a function of total charge in Fig.2.5.
We observea perfect linear �t, which con�rms the physical picture outline above. Finally, I
haveconsideredthe behaviour of the "unphysical" solutions in the presenceof an attractiv e
potential. I performed a seriesof Dirac-Fock calculations on the neon atom, but with
variable electron occupation, so as to vary the total charge of the system. The upper
positronic eigenvalue is plotted as a function of total charge in Fig.2.6. In the part of
the plot corresponding to positive total charge we seethe samelinear �t as before. For
negative charges, however, a non-linear deviation is observed. It corresponds to weakly
bound positrons with energieslarger than � 2mc2.

We can conclude that the "unphysical" positron solutions have a very physical be-

3This has the well-known consequencethat the lower virtual electronic Dirac-Fock orbitals are rather
di�use and not particularly well suited for correlation[156, 157]. A correlated method basedon a truncated
one-particle basis should therefore be performed using natural orbitals [158] or modi�ed virtual orbitals
[159].
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haviour in terms of delocalized positrons. We also seethat the appearanceof positronic
solutions with energiesabove � 2mc2 in calculations on systemswith total negative charge,
doesnot necessarilyindicate a basisset failure, but is a consequenceof the positive charge
of the positron.

The "unphysical" solutions, by their nature, do not perturb the electronic solutions,
but they reect a redundancy in the small component basis. They can be deleted from
the molecular orbital spaceby the following simple method:

The Dirac-Fock equations are solved iterativ ely. In each SCF iteration we solve the
generaleigenvalue problem

Fc = "Sc (2.42)

The overlap matrix S appears since we are working within the non-orthogonal atomic
orbital (AO) basis. The general eigenvalue problem is solved by �rst transforming to
orthonormal (MO) basis. We may do so by a canonical orthonormalization V [160] con-
structed from eigenvaluessi and eigenvectors O� i of the overlap matrix

V = Os� 1=2; OT SO = s; sij = si � ij (2.43)

The eigenvalue problem is then reducedto a standard eigenvalue problem

F0c0 = "c0; F0 = V yFV ; c0 = V � 1c (2.44)

solved by a complex or quaternion diagonalization, depending in the formalism used. The
MO-coe�cien ts are recovered by the backtransformation

c = Vc 0 (2.45)

In the transformation to MO-basis we could of coursehave usedany transformation that
orthonormalizes the basis, for example MO-coe�cien ts from a given SCF iteration. The
advantage of the canonical orthonormalization is that it allows a straightforward deletion
of numerical dependenciesintroducedby largebasisexpansions.We simply deletecolumns
of the MO-transformation matrix V Eq.(2.43) corresponding to eigenvaluesof the overlap
matrix below a selectedtreshold. From this we seethat the MO-basis neednot be of the
samesize as the AO-basis. We can use the MO-transformation to project the AO-basis
down onto a MO-basis spanning a smaller space. This reducesthe number of variational
parametersand might thereby improve convergence.

The deletion of "unphysical" solutions can be embedded in the MO-transformation.
We �rst solve the free-particle Dirac equation in the current basis. This amounts to
solving an eigenvalue problem of the form Eq.(2.42), whereF is the matrix representation
of the free-particle Hamiltonian in AO-basis. At this point we can use the canonical
orthonormalization to remove linear dependenciesfrom the MO-space. The "unphysical"
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positronic solutions are readily identi�ed by their eigenvalues � 2mc2 and are discarded.
The remaining set of MO-coe�cien ts is then used as MO-transformation matrix in all
subsequent SCF iterations, thereby ensuring the removal of both linear dependenciesand
"unphysical" solutions. The method shows that projection operators arestraightforwardly
emebeddedin the MO-transformation. We will exploit this in the next section.

2.2.6 Variational stabilit y of the Dirac-Coulom b Hamiltonian

We now return to the controversy surrounding the validit y of the Dirac-Coulomb Hamil-
tonian. The discussionwas initiated by Brown and Ravenhall [161]. They considered
a system of two non-interacting bound electrons. If the electron-electron interaction is
turned on as a perturbation, there will be an in�nite number of degeneratestates con-
sisting of one electron from the positive continuum and one positron from the negative
continuum. Thus the original bound electronic con�guration will evolve into a completely
delocalized two-particle state. This is referred to as the "continuum dissolution" or the
"Bro wn-Ravenhall disease". The solution proposedby Brown and Ravenhall was to re-
strict the Hamiltonian to positiveenergystatesby surrounding it with projection operators
and thereby neglect all pair creation processes.This solution was further expounded by
Sucher [133, 134, 135, 28]. There are, however, several possiblechoicesof projection op-
erators. They may be de�ned in terms of positive energy solutions to the free particle
Dirac equation; this corresponds to the 'free' picture of QED. Alternativ ely, one can de-
�ne the projection operators in terms of positive energy solutions of the external �eld
Dirac equation (the "Furry" picture [136]). In chemical applications, the external �eld
would be the molecular �eld de�ned by the nuclei. A third solution was proposed by
Mittleman [162], namely to construct the projection operator iterativ ely from the positive
energy solutions of the Dirac-Fock equation. This has been denoted the "fuzzy" picture
[28]. Theseproposalshave beenreviewed by Kutzelnigg [163].

The controversy and the methodological di�culties surrounding the Dirac-Coulomb
Hamiltonian are largely resolved today, as manifested by the routine application of the
Dirac-Coulomb Hamiltonian in relativistic molecular calculations. We �rst note that the
no-pair approximation can only be made with referenceto some1-particle basis, which
de�nes what is electrons and what is positrons. The variational methods of relativistic
molecular calculations at somestage involve the construction of a one-particle basis by
the solution of an e�ectiv e one-electronDirac equation, albeit with a non-local potential.
Electronic solutions appear as excited states in the spectrum of the e�ectiv e one-electron
operator. As pointed out by Talman [164, 165], they are found by application of a min-
imax principle, where the energy is minimized with respect to rotations into the virtual
electron space,and maximized with respect to rotations into the the positron space.With
a balanced basis, the electronic and positronic solutions are well separated and readily
identi�able. Once electrons and positrons have been de�ned, con�gurational expansions
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can be limited to electronic con�gurations, in accordancewith the no-pair approximation.
In the Dirac-Fock method, the electronic solutions are straightforwardly obtained by

vector selection. This corresponds to the use of projection operators within the "fuzzy"
picture. The projection operators need not, however, be de�ned explicitly . The perfor-
manceof projection operators de�ned within the "free" and "Furry" picture can be tested
within the Dirac-Fock model using the method for embedding projection operators in
the MO-transformation, outlined in the previous section. "Free" projection operators are
obtained by �rst solving the free-particle Dirac equation in the AO-basis. We then dis-
card the positronic solutions and usethe remaining vectors set as our MO-transformation
matrix in all subsequent SCF iterations. The "Furry" projection operators are obtained
in analogousmanner, but starting from the molecular �eld Dirac equation. The per-
formance of various projection operators has been studied by calculations on the radon
atom (Z = 86) in an uncontracted Cartesian Gaussiandual family basis. The large com-
ponent basis (22s19p14d9f) consisted of 253 functions, and the small component basis
(19s22p19d14f9g),generated by the unrestricted kinetic balance condition, consisted of
474 functions. The results are presented in Tab.2.2.6. The "free" projection operator is
seento perform poorly, which is not unexpected[166]. The introduction of an external �eld
leads to a "dressing" of the free electrons and positrons. The localized bound electrons
are of a quite di�eren t nature than the delocalized free electrons. The "Furry" projection
operator, however, is seento perform rather well. We can understand this by the fact
that the small component density is localized mostly to the nuclear region, subject to the
almost unscreenednuclear charge. The introduction of the electron-electron interaction
therefore doesnot drastically change the small component density. In Tab.2.2.6we have
also included result obtained by the method described in the previous section, where a
one-to-onematching of the large and small component basisis obtained by projecting out
the "unphysical" free positron solutions. Thes results are seento be equivalent to the
results obtained by the basisset extension of the atomic code GRASP [117, 96], where a
one-to-onematching of large and small component basisfunctions is obtained by restricted
kinetic balancede�ned in terms of Gaussian2-spinors(seepaper I).

2.2.7 Direct SCF: a numerical example

In paper I wehave presented the theory of the 4-component SCF method. A key ingredient
in direct SCF is the screeningof contributions to the Fock matrix to reducethe time spent
in each SCF iteration. In this section we illustrate the method by a numerical example.
Let us �rst briey review the screeningimplemented in DIRA C.

Integrals are generatedin batches(K,L,M,N) de�ned by shell indices and screeningis
basedon a threshold � . In each SCF iteration we generatea density matrix over shell
indices to be kept in memory

DK L = max (D �� ;� ); � 2 K ; � 2 L; � 2 [0; 3] (2.46)
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Table 2.3: Total (ED F ) and orbital energies(in Hartrees) of the radon atom from Dirac-Fock
calculations using various schemes. UKB = the large and small component basesrelated by
unrestricted kinetic balance. RKB = "unphysical" free positronic solutions projected out of the
MO-basis. VEXT = all positronic solutions of the molecular �eld Dirac equation projected out of
the MO-basis. FREE = all positronic solutions of the free particle Dirac equation projected out
of the MO-basis. GRASP = results from a calculation performed with the basis set extension of
GRASP, which employs restricted kinetic balancede�ned in terms of a Gaussian2-spinor basis.

UK B RK B V EX T F REE GRASP
ED F � 23601:879021 � 23601:929261 � 23601:911484 � 24387:589625 � 23601:930828
1s1=2 � 3641:175215 � 3641:172817 � 3641:189420 � 3904:888545 � 3641:173
2s1=2 � 668:806797 � 668:805891 � 668:810237 � 707:522900 � 668:8059
2p1=2 � 642:279195 � 642:295351 � 642:284778 � 671:753287 � 642:2954
2p3=2 � 541:101773 � 541:100868 � 541:105285 � 553:106216 � 541:1008
3s1=2 � 166:829782 � 166:829514 � 166:830532 � 176:754326 � 166:8295
3p1=2 � 154:879012 � 154:883240 � 154:880136 � 162:755672 � 154:8832
3p3=2 � 131:728395 � 131:728144 � 131:729117 � 135:388427 � 131:7281
3d3=2 � 112:562535 � 112:563187 � 112:563135 � 116:264914 � 112:5632
3d5=2 � 107:756490 � 107:756249 � 107:756985 � 110:473356 � 107:7562
4s1=2 � 41:310404 � 41:310334 � 41:310574 � 44:266294 � 41:31032
4p1=2 � 36:012965 � 36:014083 � 36:013217 � 38:359034 � 36:01407
4p3=2 � 30:117674 � 30:117608 � 30:117829 � 31:339004 � 30:11759
4d3=2 � 21:544561 � 21:544774 � 21:544668 � 22:671517 � 21:54476
4d5=2 � 20:435777 � 20:435722 � 20:435860 � 21:317706 � 20:43571
4f5=2 � 9:190776 � 9:190751 � 9:190788 � 9:911893 � 9:190735
4f7=2 � 8:925160 � 8:925127 � 8:925167 � 9:493619 � 8:925110
5s1=2 � 8:405941 � 8:405924 � 8:405975 � 9:317665 � 8:405917
5p1=2 � 6:405063 � 6:405298 � 6:405110 � 7:128608 � 6:405292
5p3=2 � 5:172874 � 5:172857 � 5:172902 � 5:636034 � 5:172849
5d3=2 � 2:186505 � 2:186538 � 2:186518 � 2:566585 � 2:013540
5d5=2 � 2:013557 � 2:013546 � 2:013567 � 2:348793 � 2:186532
6s1=2 � 1:068464 � 1:068461 � 1:068470 � 1:393778 � 1:068460
6p1=2 � 0:536667 � 0:536697 � 0:536673 � :795442 � 0:536698
6p3=2 � 0:381745 � 0:381742 � 0:381749 � :590526 � 0:381740
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and for each integral batch we de�ne

Dmax = max
�
D C

max ; D E
max

�
;

(
D C

max = 4 � max (DK L ; DM N )

D E
max = max(DN L ; DM L ; DN K ; DM K )

(2.47)

We furthermore calculate a strict upper limit to the size of two-electron integrals in the
batch by

I K LM N = max [G�� G�� ]; G�� =
p

(�� j �� ); � 2 K ; � 2 L; � 2 M ; � 2 N (2.48)

In DIRA C screeningis performed in two steps:

1. Prescreening of integral batches
We only calculate batches for which

Dmax I K LM N � � (2.49)

2. Prescreening of contributions
If the batch is calculated, we perform a secondseparatescreeningon Coulomb

D C
max I K LM N � � (2.50)

and exchange integrals

D E
max I K LM N � � (2.51)

before feeding the integrals to the routine for the construction of the Fock matrix.
If the exchangecontributions are screenedout, we calculate only the Coulomb con-
tributions to the Fock matrix, and vice versa.

We illustrate the method by an example. I have performed a 4-component direct
Dirac-Fock calculation on the diatomic interhalogen BrI at the experimental gas phase
bond length 248.5 pm [167] in a basis of uncontracted Cartesian Gaussian dual family
basis. The basis sets are given in Tab.2.2.7. The Dirac-Fock calculation was performed
in the following manner: In the initial SCF iterations the two-electron Fock matrix is
constructed from only LL integrals. SL integrals are not introduced into the SCF process
until the convergenceon total energyis lessthan 1:0�10� 4 Hartrees. Likewise,SSintegrals
are not introduced until the convergenceon total energy is lessthan 1:0 � 10� 6 Hartrees.
Screening is based on the di�eren tial density approach with threshold � = 1:0 � 10� 8.
However, in a SCF iteration wherea new integral classis introduced,di�eren tial densities
are replacedby true densities, in order to avoid the introduction of errors, as discussedin
paper I.
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Figure 2.7: 4-component direct SCF calculation on BrI: Percentage of integral batchesscreened
out in the �rst step.
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Table 2.4: Basis setsof uncontracted Cartesian Gaussianused in the calculation on BrI. � L and
� S refer to the large and small components basissets respectively. The total number NT of basis
functions is the sum of the number of large (NL ) and small (NS ) basisset functions.

� L NL � S NS NT

Br 16s14p9d 112 14s16p14d9f 236 348
I 20s17p11d 249 17s20p17d11f 289 426

Table 2.5: E�ects of screening in 4-component direct SCF calculation on BrI. The CPU-time
refers to the average (over SCF iterations) absolute time(h:min:s) and the time relative to the
unscreenedcasefor processingintegrals and Fock matrix.

Integral batchesscreenedout (average) AverageCPU-time
First step Secondstep

Coulomb exchange
LL integrals 41.8% 1.6% 1.3% 0:09:10 90.5%
SL integrals 51.4% 0.5% 10.9% 1:00:25 67.2%
SSintegrals 77.4% 1.5% 8.2% 0:58:27 29.7%
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The e�ects of screeningon the iterativ e processare summarizedin Tab.2.5and visual-
ized in Figs. 2.7,2.8and 2.9. On average77.4%of the SS-integral batchesare screenedout,
so that the time spent on generating the integrals and processingtheir contributions to
the Fock matrix is reducedby a factor of more than three, comparedto the corresponding
calculation without screening. On average,more time is in fact spent on processingthe
SL-integrals. The e�ect of screeningCoulomb contributions is small, but this is reasonable
due to the long-range behavior of the Coulomb interaction. The screeningof exchange
contributions , on the other hand, has an appreciablee�ect. The e�ect is slightly larger
for SL integrals than for SS integrals, but this is probably due to the fact that so many
batches of SS integrals are screenedout in the �rst step. The "dip" in the curves at
iteration 21 and 28 in Fig2.7 gives some indication of the e�ect the di�eren tial density
approach, becausein thesetwo iterations new integral classesare introduced and the dif-
ferential densitesreplacedby absolute densities. In iteration 35, near convergence,there
is a reduction in the number of integral batches that are screenedout, but this is due to
the useof a dynamic threshold � ; when the energyconvergencepassesbelow the threshold
� , the threshold is adjusted down accordingly to increasethe precision in the Fock matrix
construction.

Further studies on the e�ect of screeningin 4-component direct SCF are neededto
optimize the process.Also, the routine for the construction of Fock matrices is currently
somewhat too slow.
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Figure 2.8: 4-component direct SCF calculation on BrI: Percentage of integral batchesfor which
Coulomb contributions were screenedout in secondstep
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Figure 2.9: 4-component direct SCF calculation on BrI: Percentage of integral batchesfor which
exchangecontributions were screenedout in secondstep



94 Ch.2 Man y-electron systems

2.3 Concluding remarks

. . . after a Dir ac lecture, the sessionchairman asked the audience if they
had any questions. A person stood up and said 'I did not understand
the derivation of . . . etc, etc.' Paul made no response, the chairman
asked, 'aren't you going to answer the question?' Paul said, 'that was
a statement, not a question.'

J.E.LANNUTTI (1987) [2]

In this thesis contributions to the theory of 4-component relativistic molecular calcula-
tions have beenpresented. The theory of the 4-component direct SCF method has been
implemented in the code DIRA C. The code is currently being applied to several molecular
calculations. We have also presented the theory of multi-con�gurational self-consistent
�eld (MCSCF) method. As discussedin previous sections,the needmulti-con�gurational
approaches is ampli�ed in the relativistic domain due to the �ne structure provided by
the spin-orbit interaction. The 4-component MCSCF method is under implementation in
cooperation with K.G. Dyall and H.J.Aa.J�rgensen.

The 4-component methods provide a relativistic description of molecules.The opera-
tors have a simple structure, and are well-de�ned for a wide rangeof molecular properties.
Work is therefore in progressin the development of 4-component methods for �rst and
secondorder molecular properties. For properties dependent on the electron density in
the nuclear region, 4-component methods will be relevant even for fairly light systems.

The main di�cult y of the 4-component methods lies in their computational expense.
The situation has been improved with the introduction of direct SCF methods, which
makes it possibleto perform relativistic molecular calculations on work stations. There
is, however, a needto reducethe large number of integrals stemming from the small com-
ponent basis. The prospects for integral approximations looks good, due to the localized
atomic nature of the small component density. Progress in this area would open up a
wide range of chemical problems for study by 4-component methods. For large systems
such investigations will bene�t from the explicit calculations of molecular gradients and
the useof secondorder optimization methods. This should therefore be research areasof
high priorit y.

We may concludethat the future for 4-component methods looks bright.
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DIRA C : documen tation
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A ll-electron

C alculations

A.1 General overview

Version 2.0. Last up date: No v 14 1995 - tsaue@kelvin.uio.no

DIRA C is a FORTRAN code for relativistic molecular calculations basedon the Dirac-
Coulomb (-Gaunt) Hamiltonian. It solvesthe the 4-component Dirac-Fock(DF) equations
by the SelfConsistent Field (SCF) iterativ e procedureand providestools for analysisof the
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converged wave function. DIRA C is constructed around HERMIT , a highly e�cien t
code for generating one- and two-electron integrals over a basis of Cartesian Gaussian
functions. The two-electron integrals naturally split into three classes:

� LL-in tegrals | (LL j LL )

� SL-integrals | (SS j LL )

� SS-integrals | (SS j SS)

(possibly extended by Gaunt integrals). For each integral type two integral processing
modesare accessibleto the user

� conventional mode: symmetry-adapted integrals are stored on disk

� direct mode: integrals are regeneratedwhenever they are needed

In the latter mode a di�eren tial density matrix approach may be used to reduce the
number of integrals calculated in each iteration. This number may be reduced further
by including SL- and/or SS-integrals only at an advanced stage in the SCF-iterations,
determined by convergencecriteria or by specifying the iteration at which to include
the integrals. Convergencemay be enhancedby damping the Fock matrix or by Direct
Inversion of Iterativ e Subspaces(DI IS).

In the present version only the large component basis needsto be de�ned, the small
components then being generatedby the kinetic balanceprescription. Restricted kinetic
balancemay be enforcedby deleting unphysical solutions in the positron spectrum of free
electronsolutions. The nuclearchragedistribution is represented by a Gaussianfunction to
avoid the sinuglarities introducedby point nuclei. Time reversalsymmetry is implemented
usingquaternion algebra,whereasspatial symmetry is restricted to the binary groups,that
is D2h and subgroups.

DIRA C is an experimental code, subject to continous change.

A.2 Recent mo di�cations

Nov 11 1995 Overlap selectionimplemented with keyword OVLSEL.

Nov 11 1995 Keyword NOSMLVturns o� the small component nuclear at-
traction integrals and thereby the spin-orbit interaction in the
�eld of the nuclei.

Nov 3 1995 File DFCYCLcontaining SCF history is formatted.
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Nov 3 1995 Convergenceacceleration: By default DI IS is activated us-
ing a very large threshold (DIISTH). When DI IS can not
be used damping is activated using a default damping fac-
tor 0.25. DI IS can be turned o� using the keyword .NODIIS.
The DI IS threshold can be modi�ed using the keyword .DI-
ISTH. Damping canbeturned o� using the keyword .NODAMP.
The damping factor can be modi�ed using the keyword typ
.DAMPF C.

Nov 3 1995 Restart facilities have been made more robust, see section
A.7.

Oct 31 1995 Even whenan integral batch is generatedit is possibleto have
separate screeningof Coulomb and exchange contributions.
Exchangecontributions are generallymore local and easierto
screenout. This feature is activated by the keyword .CEDIFF.

Oct 31 1995 All free positronic solutions may be projected out of the MO-
spaceusing the keyword .FREEPJ

Oct 31 1995 All positronic solutions of the one-electronFock matrix may
beprojected out of the MO-spaceusing the keyword .VEXTPJ

A.3 Installing the program

The program can be installed on a number of di�eren t typesof computers. It is present as
a seriesof master �les that are processedby the UPDATEcode to handle machine-speci�c
features. The master �les consistsof three categories

dir*.u DIRA C - �les

*her*.u HERMIT - �les

gp*.u library - �les

In addition there are .cdk - �les containing machine-speci�c features and COMMON-
blocks:

gen.cdk - general features

dirac.cdk - featurespertaining speci�cally to DIRA C

aba.cdk - featurespertaining speci�cally to HERMIT
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gpg08.cdk - featurespertaining speci�cally to library routines

Two shell scripts are available for installing the program:

lag - install one or more main modules: HERMIT , DIRA C or library �les

add - add a speci�c master �le

A.4 Running the program

Two input �les are neededto run DIRA C :

� The basis �le de�nes the basisset, nuclear con�guration and symmetry.

� The men u �le de�nes the calculation.

At the start of any calculation the basis �le is processedand then various modules are
activated based on the information given in the menu �le. One may therefore run a
sequenceof calculations based on the same basis �le. Intermediate �les are kept to a
minimum. For instance, one may �rst run a DF-calculation which gives a set of MO-
coe�cien ts de�ning the converged wave function. Population analysis may be performed
in a separatecalculation and then requires only the �le of coe�cien ts in addition to the
basis �le.

The basic UNIX command for running the program is

dirac.x < {menufile} > {outputfile}

The basis �le must be present as MOLECULE.INP.
The various program modules have di�eren t memory requirements. Memory may be

allocated dynamically by setting an environmental variable DIRWRKwhich de�nes the
number of 8-byte words neededin the calculation, e.g.

setenv DIRWRK30000000

means that 30 Mw of memory are to be allocated1 Default memory is speci�ed by the
variable LWORKwhich may be set in the dirac.cdk - �le.

A C-shell script dhf is available for automatization of calculations:

Usage: dhf [flags] file
Flags:

-incmo : Copy DFCOEFto work area
-utcmo : Save DFCOEFfrom work area

11 Mw = 8,000,000bytes = 7.63 MB. 1MB = (1024)2 bytes.
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-infck : Copy DFFCK2to work area
-utfck : Save DFFCK2from work area
-mw mem : set memory(in megawords)
-rmwrk : remove work area after calculation
-run name : File suffix for output
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A.5 Input �les

Common to both the menu �le and the basis �le is that any line that begins with the
hash symbol # is interpreted as a comment. This feature may be usedfor the insertion of
comments and in the menu �le to \turn o� " keywords.

A.5.1 Men u�le

The menu �le de�nes the calculation and has the generalstructure

*DIRAC
< keywords >

< chapter >
< keywords >

< chapter >
< keywords >

...
*ENDOF

Each chapter has an asterisk (* ) in the initial position and generally refer to a program
module. For each chapter a set of keywords may be speci�ed, possibly with additional
arguments. The setof chapters and keywordsallows the usergreat exibilit y in de�ning
the current calculation.

1. *DIRA C

(a) Job assignmen t
In this sectionthe program modulesto becalled are de�ned. It is recommended
to start a new set of calculations with all modules turned o� in order to check
the basis �le processing.

.TITLE title line
Arguments: Title line (max. 50 characters)
Default: DIRAC: No title specified !!!

.INPTES input test: no job modules called
Default: INPTES= .FALSE.

.DHFCAL perform Dirac-Fock calculation
Default: DODHF= .FALSE.

.DHFANA analyzeDirac-Fock wave function
Default: DOANA= .FALSE.

(b) Job control



A.5 Input �les 227

.DIRECT - direct evaluation of two-electron integrals.
Arguments: Integers ILL,ISL,ISS
IXX = 1(on)/ 0(o� ) (XX = LL,SL or SS)
Default: ILL = ISL = ISS = 0

.ONESYS ignore two-electron part
Default: ONESYS= .FALSE.

.NSYM number of fermion ircops (one or two).
Default: NSYM= 1

.URKBAL unrestricted kinetic balance
Default: URKBAL= .FALSE.
Restricted kinetic balance. This is imposedby deleting unphysical
solutions from the free particle positronic spectrum.

.FREEPJ project out all free positronic solutions from the MO-space
Default: .FALSE.

.VEXTPJ project out all external �eld positronic solutions from the MO-
space
Default: .FALSE.

.SPHTRA transformation to spherical harmonics embedded in transforma-
tion to orthonormal basis;totally symmetric contributions deleted.
Arguments: Integers ISPHL,ISPHS| ISHP = 1(on)/0(off)
Default: ISPHL = 1,ISPHS = 0. Note that with ISPHL = 1
and restricted kinetic balance, the correct transformation of the
small components is automatically imposed.

.CVALUE reset the value of light
Arguments: CVAL
Default: CVAL= 137.03604D0

.PTNUC usepoint nucleus
Default: The nuclearchargedistribution is represented by a Gaus-
sian function.

.TIMINT time integral evaluation
Default: TIMINT = .FALSE.

.OVLTOL thresholds for linear dependencein large and small components
Arguments: Real STOL(1),STOL(2)
Default: Large: STOL(1) = 1.0D-6.
Small: STOL(2) = 1.0D-8

(c) Prin t levels

.PRINT generalprint level
Arguments: Integer IPRGEN
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Default: IPRGEN= 0
.IPRONE print level for one-electronintegrals

Arguments: Integer IPRONE
Default: IPRONE= 0

.IPRTWO print level for two-electron integrals
Arguments: Integer IPRTWO
Default: IPRTWO= 0

2. *READIN | Input module : Read and processmenu and basis �les.

.PRINT generalprint level in input module
Arguments: Integer IPREAD
Default: IPREAD= 0

.MAXPRI maximum number of primitiv e functions in a given block in basis �le
Arguments: Integer MAXPRI
Default: MAXPRI= 15

3. *DHF CAL | Perform Dirac-Fock calculation.

(a) DHF { occupation

.NELECT for each fermion ircop, give number of electrons
Arguments: Integers(NELEC(I),I=1,NSYM)
Default: NELEC(1)= NELEC(2)= 0

(b) Prin t levels

.PRINT generalprint level
Arguments: Integer IPRDHF
Default: IPRDHF= 0

(c) Trial function
A DF-calculation may be initiated in three di�eren t ways:

� using MO-co e�cien ts from a previous calculation.
� using t wo-electron Fock matrix from a previous calculation; this may

be thought of as starting from a convergedDHF potential
� using coe�cien ts obtained by diagonalization of the one-electronFock ma-

trix: the bare nucleus approac h.

Default is to start from MO-coe�cien ts if the �le DFCOEFis present. Otherwise
the bare nucleus approach is followed. In all three caseslinear dependencies
are removed in the 0th iteration.

.TRIVEC start SCF-iteratons from vector �le
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.TRIFCK start SCF-iterations from two-electronFock matrix from previous
calculation

(d) Con vergence criteria
Three di�eren t criteria for convergencemay be chosen:

� the di�erence in total energybetweentwo consecutive iterations
� the largest absolute di�erence in the total Fock matrix between two con-

secutive iterations
� the largest element of the DI IS error vector e = [F; D ] (in MO-basis).

The changein total energyis approximately the squareof the largest element in
the error vector or the largest changein the Fock matrix. Default is convergence
on error vector with threshold SCFCNV= 1.0D-6 . Alternativ ely, the iterations
will stop at the maximum number of iterations.

.MAXITR maximum number of SCF - iterations
Arguments: Integer MAXITR
Default: MAXITR= 50

.ERGCNV threshold for convergenceon total energy
Arguments: Real SCFCNV

.EVCCNV convergeon error vector
Arguments: Real SCFCNV

.FCKCNV convergeon largest absolute changein Fock matrix
Arguments: Real SCFCNV

(e) Con vergence acceleration
It is imperative to keepthe number of SCF-iterations at a minimum. This may
be achieved by convergenceaccelerationschemes.

� Damping The simplest scheme is damping of the Fock matrix that may
remove oscillations. In iteration n + 1 the Fock matrix to be diagonalized
is:

F0 = (1 � c)F n+1 + cFn ; c � � � damping factor (A.1)

� DI IS (Direct Inversion of iterativ e Subspaces)may be thought of as gen-
eralized damping involving Fock matrices from many iterations. Damping
factors are obtained by solving a simple matrix equation involving the B-
matrix constructed from error vectors (approximate gradients).

In DIRA C DI IS takesprecedenceover damping.

.DIISTH change default threshold for initiation of DI IS, basedon largest
element of error vector
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Arguments: Real DIISTH | convergencethreshold for initiation
of DI IS
Default: A very large number.

.MXDIIS maximum dimension of B-matrix in DI IS module
Arguments: Real MXDIIS| maximum dimension of B-matrix
Default: MXDIIS = 15

.NODIIS do NOT perform Direct Inversion of Iterativ e Subspaces(DI IS)
Default: DI IS is activated.

.DAMPFC changedefault damping factor
Arguments: Real DAMPFC| damping factor
Default: DAMPFC= 0.25 .

.NODAMP do NOT perform damping of Fock matrix
Default: Damping is activated, but DI IS takesprecedence.

(f ) State selection
Convergencecan be improved by selection of vectors based on overlap with
vectors from a previous iteration. This method mayu also be used for conver-
genceto some excited state. If DIRA C starts on a vector set , this vector
set forms the criterium for overlap selection, otherwise the criterium are the
vectors from the �rst iteration. Vector selectionbasedon vectors generatedby
the bare nucleusapproach are not recommended.

.OVLSEL activate overlap selection
Default: No overlap selection.

(g) Iteration speedup
The total run time may be reduced signi�cantly by reducing the number of
integrals to be processedin each iteration:

� Screening on in tegrals: Thresholds may be set to eliminate integrals
below the threshold value. The threshold for LL-in tegrals is set in the
basis �le, but this threshold may be adjusted for SL- and SS-integrals by
threshold factors:

{ Threshold for LL-in tegrals: THRS
{ Threshold for SL-integrals: THRS*THRFAC(1)
{ Threshold for SS-integrals: THRS*THRFAC(2)

� Screening on densit y: In direct mode further reductions are obtained by
screeningon the density matrix as well. This becomeseven more e�ectiv e
if one employs di�eren tial densities , that is

� D = D n+1 � D n (A.2)
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� Neglect of in tegrals: The number of integrals to be processesmay be
reducedeven further by adding SL- and SS-integrals only at an advanced
stage in the DHF-iterations, as determined either by the number of it-
erations or by energy convergence. The latter takes precedenceover the
former.

.THRFAC adjust integral thresholds for SL- and SS-integrals.
Arguments: RealsTHRFAC(1),THRFAC(2)
Default: THRFAC(1)= THRFAC(2)= 1

.DNSTHR threshold for screeningon density matrix
Arguments: DNSTHR
Default: Real DNSTHR= 1.0D-10

.CEDIFF separatedensity screeningof Coulomb and exchangecontributions
Default: .FALSE.

.NODSCF do not perform SCF - iterations with di�eren tial density matrix
Default: usedi�eren tial density matrix in direct SCF.

.CNVINT set threshold for convergencebefore adding SL- and SS-integrals
to SCF-iterations.
Arguments: RealsCNVINT(1)(SL),CNVINT(2)(SS)
Default: Very large numbers.

.ITRINT set number of iterations before adding SL- and SS-integrals to
SCF-iterations.
Arguments: Integers ITRINT(1) (SL),ITRINT(2) (SS)
Default: ITRINT(1) = ITRINT(2) = 1

.NOSMLV turn o� small component nuclear attraction integrals; this turns
o� the spin-orbit interaction from the �eld of nuclei. If SL two-
electron integrals are turned o� as well, all spin-orbit interaction
is cancelled.
Default: Integrals are included.

(h) Output control

.VECPRI separatecontrol of printing of large and small components
Arguments: Integers IPRVEC(1)(large),IPRVEC(2) (small).
Default: No vectors printed.

.EIGPRI control printing of electron and positron solutions
Arguments: IntegersIPREIG(1) (electron),IPREIG(2)(positron)
Default: Electronic eigenvaluesprinted.

.SPINOR for each fermion ircop, give number of spinors to print.
Default: the occupied electronic solutions.
Arguments: Integers(NSPI(I),I=1,NSYM)
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.OFFSET for each fermion ircop, o�set for start addressfor vectors to print.
Arguments: Integers(ISPI(I),I=1,NSYM)
Default: 0 , meaning the �rst electron solution. (Positron solu-
tions may be printed by giving negative o�sets).

4. *DHF ANA | Analyze Dirac-Fock wave function. Mullik en population analysis is
performed in AO-basis. The analysis is basedon the concept of labels. Each basis
function is labeledby its functional type and center. The labelsare given in output.
A set of primitiv e labels may be collected to group labels as speci�ed by the user.

.PRINT generalprint level
Arguments: Integer IPRANA
Default: IPRANA= 0

.MULPOP give Mullik en grosspopulations
Default: DOMULP= .FALSE.

.NETPOP give Mullik en grossand net/overlap populations
Default: DONETP= .FALSE.

.LABDEF de�ned labels for use in Mullik en population analysis
Arguments: Integer NCLAB- number of labels to de�ne

DOI = 1,NCLAB
READ(LUCMD,'(A12,I5)') CLABEL(I),NGRPS
READ(LUCMD,*)(IBUF(J),J=1,NGRPS)
DOJ = 1,NGRPS

ICLAB(IBUF(J)) = I
ENDDO

ENDDO

.ADDSML usedefault labels for small components
Default is to gather all small component functions belongingto a given
center.

.SPINOR for each fermion ircop, give number of spinors to analyze.
Default: the occupied electronic solutions.
Arguments: Integers(NSPI(I),I=1,NSYM)

.OFFSET for each fermion ircop, o�set for start addressfor vectors to analyze.
Arguments: Integers(ISPI(I),I=1,NSYM)
Default:0 , meaningthe �rst electron solution. (Positron solutions may
be analyzedby giving negative o�sets).
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A.5.2 Basis�le

The basis �le de�nes the present basisset, molecular geometry and the symmetry of the
system. A summary of the basis �le structure is given in Tab. A.5.2.

Card 1 : INTGRL| a keyword that identi�es the �le.

Card 2 : TITLE(1),TITLE(2) (A72/A72) Two title lines.

Card 3 : CRT,NONTYP,NSYMOP,(SYMOP(I),I =1,3),T HRS
(BN,A1,I4,I5,3A3,1X,D10 .2)

CRT - must be set to 'C' to indicate that Cartesian Gaussiansare to be used.

NONTYP- specify the number of atomic types

NSYMOP- specify the number of generatorsof the symmetry group

SYMOP(I)- Symmetry is restricted to restricted to the binary groups, that is D2h

and subgroups, which means that a symmetry operation acting on the main
axes (x,y,z) will at most reverse their direction. A group generator is there-
fore identi�ed by a 3-character string that speci�es the axesreversedunder its
operation. Examples are given for the eight binary groups in Tab. A.5.2.

THRS(D10.2) Threshold for LL-in tegrals. Separate thresholds for SL- and SS-
integrals may be speci�ed in the menu �le.

� For each atomic type:

Card 3.1 Q,NONT(I),QEXP(BN,F10.0,I5,F20.5)

Q - nuclear charge
NONT(I) - number of symmetry independent centers
QEXPGaussianexponent for nuclear charge distribution (if zero, then default

is used).

� For each symmetry independent center:

Card 3.1.1 NAMN(NUCIND),[CORD(J,NUCIND), J = 1,3] (BN,A4,3F20.0)
NAMN- name of nuclear center
CORD(J)- x-,y-and z-coordinate of nuclear center

Card 3.2 BSET,IQM(I),[JCO(J,I),J=1, IQM(I)] (BN,A5,12I5)

BSET- set equal to LARGEto indicate that large component basis is de�ned
explicitly

IQM - highest angular quantum number L plus one, e.g. s(1),p(2) ....
JCO - number of blocks for each L-value
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� For each block read exponents and coe�cien ts:
In the present version only uncontracted basissetsare used. The large compo-
nent basis is given explicitly , whereasthe small component basis is generated
by the kinetic balanceprescription. If contracted basissetsare to be used,the
two components must each be speci�ed explicitly . This will be possiblein the
next version of DIRA C .

Card 3.2.1 FRMT,NUC,NRC,ISGEN(BN,A,I4,2I5)
FRMT- format for reading of exponents and coe�cien ts

H - high precision. For each exponent the �rst line is read in for-
mat (4F20.8) and addtional lines containing only coe�cien ts
are read in format(20X,3F20.8) .

F - free format
(blank) - default precision. For each exponent the �rst line is read in

format (8F10.4) and addtional lines containing only coe�cien ts
are read in format(10X,7F10.4) .

NUC - number of primitv e exponents
NRC - number of contracted functions (set equal to zero for uncontracted

basis)
ISGEN- speci�cation of how to generate small component functions by

kinetic balance:
� ISGEN= 0: No small component functions generated
� ISGEN= 1: Small component functions generated upwards, e.g.

p ! d
� ISGEN= 2: Small component functions generateddownwards, e.g.

p ! s
� ISGEN= 3: Small component functions generated both upwards

and downwards, e.g. p ! s;d
Card 3.2.2 [ALPHA(K),[CPRIM(K,L),L=1,NRC],K =1,NUC]

Read exponents and coe�cien ts. Seecard 3.2.1.

Card 4 FINISH - keyword to indicate end of �le
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Table A.1: Example de�nitions of the binary groups (- indicates blank character)
Group NSYMOP SYMOP Operations

D2h 3 --Z--Y--X � xy ; � xz ; � yz

D2 2 XY--YZ--- C2
z ; C2

x
C2v 2 -Y-X----- � xz ; � yz

C2h 2 --ZXYZ--- � xy ; i
C2 1 XY------- C2

z
Cs 1 --Z------ � xy

Ci 1 XYZ------ i
C1 0 ---------

Table A.2: Summary of basis �le structure
Card Input Format

1: KEYWRD= 'INTGRL' (A6)
2a: TITLE(1) (A72)
2b: TITLE(2) (A72)
3: CRT,NONTYP,NSYMOP,[SYMOP(I),I =1,3],T HRS (BN,A1,I4,I5,3A3,1X,D10. 2)

� For each atomic type: I = 1,NONTYP
3.1: Q,NONT(I),QEXP (BN,F10.0,I5,F20.5)

� For each symmetry independent center: J = 1,NONT(I)
3.1.1: NAMN(NUCIND),[CORD(J,NUCIND), J = 1,3] (BN,A4,3F20.0)

3.2: BSET,IQM(I),[JCO(J,I),J= 1,IQ M(I)] (BN,A5,12I5)

� For each block: J = 1,IQM(I)
3.2.1: FRMT,NUC,NRC,ISGEN (BN,A,I4,2I5)
3.2.2: [ALPHA(K),[CPRIM(K,L),L=1,NRC],K= 1,NUC] seetext

4: KEYWRD= 'FINISH' (A6)
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A.6 Output �les

A formatted output �le is connetedto DIRA C through standard output. The user may
modify the output by setting variousprint levelsin the menu �le. DIRA C willl in addition
produce a formatted �le DFCYCLcontaining a summary of the SCF process. In addition
to the formatted DIRA C producesa number of unformatted �les. They are

� Con trol �les

DFDIIS information about DI IS process

DFEVEC direct access�le with DI IS error vector

� Co e�cien ts

DFCOEF MO-coe�cien ts from current SCF-iteration

DFCMOS coe�cien ts from current SCF-iteration in MO-basis

� One-electron in tegrals and matrices

DF1INT one-electronintegrals contributing to one-electronFock matrix

DFOVLP overlap matrices

DFTMAT MO-transformation matrix

DFFCK1 One-electronFock matrix (in QO basis)

� Tw o-electron in tegrals and matrices
For each integral class(XX = LL,SL,SS) in conventional mode:

DFXXSA sorted singlet integrals (both Coulomb and exchangecontributions)

DFXXSB sorted singlet integrals (both Coulomb and exchangecontributions)

DFXXTA sorted triplet integrals (only exchangecontributions)

DFXXTB sorted triplet integrals (only exchangecontributions)

DFTWXX scratch �le of unsorted integrals from HERMIT

DFXXTB scratch �le used in sorting process

In addition:

DFFCK2 two-electron Fock matrix in QO-basis
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A.7 Restart

DIRA C has robust restart facilities:

� When calculating a new poin t on a potential surface, DIRA C can start from
the coe�cien ts (the �le DFCOEF) , from the two-electron Fock matrix in AO-basis
(the �le DFFCK2) or from solutions of the one-electronFock matrix (bare nucleus
approximation). Default is to start from coe�cien ts if the unformatted vector �le
DFCOEFis present; otherwiseDIRA C usesthe bare nucleusapproxiamtion. Restart
on Fock matrix may be speci�ed by the keyword .TRIFCK.

� When restarting on the same poin t on the potential surface, DIRA C needsthe
formatted �le typ DFCYCL to update status of the SCF process. The full SCF
summary will be provided at the end of the current iterations, so that the output
�le from the previous SCF iterations is generally not needed. In addition DIRA C
needsthe coe�cien ts (�le DFCOEF). To restart on DI IS, DIRA C needsthe following
�les: DFDIIS, DFCMOS,DFFOCKand DFEVEC. If DI IS is not requested,DIRA C
may restart on damping if the �le DFFOCKis present.
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A.8 Test example

We consider the calculation of the F2- moleculeas a test case.Notice the useof the hash
symbol #} to insert comments and turn o� keywords.

A.8.1 Basis �le

INTGRL
Fluorine molecule. Experimental bond length: 1.4178 A
Basis: F9s5p1d
C 1 3X Y Z A .10D-15
# D2h - symmetry is specified.

9.0 1
F1 .000000000000000 .000000000000000 .70890000000000 *
LARGE 3 1 1 1

9 0 3
9994.7900
1506.0300
350.26900

# Commentsmay be inserted anywhere
104.05300
34.843200
12.216400
4.3688000
1.2078000
.3634000

5 0 3
44.355500
10.082000
2.9959000
.9383000
.2733000

1 0 3
1.6200000

FINISH
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A.8.2 Men u �le

*DIRAC
.TITLE
Fluorine molecule. Restr.kin.bal. Sph.tr.
.DIRECT
1 1 1

.DHFCAL

.DHFANA

.NSYM
2
#.URKBAL
*READIN
*DHFCAL
.NELECT
10 8

.PRINT
2
.DODAMP
0.25
.DODIIS
5000.0
# The following three keywords specify that the large component
# coefficients for all spinors are to be printed. In OFFSETand
# SPINORvery large values are given. These will be modified in the
# program down to maximumpossible values, that is printing all
# spinors.
.OFFSET
-100 -100
.SPINOR
100 100

.VECPRI
1 0

.EIGPRI
1 1

*DHFANA
.MULPOP
*ENDOF
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App endix B

Reduction of the Breit term to
non-relativistic form

We consider the Breit interaction

ĝB r eit = �
�

� 1 � � 2

2r12
+

(� 1 � r 12) (� 2 � r 12)
2r 3

12

�
(B.1)

It can be reformulated to [168]

ĝB r eit = ĝGaunt + ĝgauge (B.2)

The �rst term is then the Gaunt-term

ĝGaunt = �
� 1 � � 2

r12
(B.3)

and the secondterm is a gauge-dependent term

ĝgauge = �
(� 1 � r 1) (� 2 � r 2) r12

2
(B.4)

where r 1 and r 2 act only on r 12 and not on the wave function. We consider the Foldy-
Wouthuysen transformation of the Breit operator to order (Z � )2. In particular we are
interested in the separatecontributions of the Gaunt and the gauge-dependent term. This
requires the evaluation of the anticommutator expression[40]

1
4m2c2

h
(� 2 � p2) ;

�
(� 1 � p2) ; ĝB r eit �

+

i

+
(B.5)

which is quite a laborious task. Let us �rst outline the generalstrategy for the evaluation
of the commutator expression.The commutator we want to evaluate may be written as

�
� 2i p2i ; [� 1j p1j ; � 1k � 2m M km ]+

�
+

(B.6)
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where M km is a function of r 12 and symmetric with respect to particle exchange

M = M (r 12) = M (� r 12); r 12 = r 1 � r 2 (B.7)

The commutator consistsof a spacepart, represented by momentum operators and coor-
dinates, and a spin part, represented by Dirac � -matrices. The latter go into Pauli spin
matrices in the two-component form. The spin part is best handled using anticommutator
relations, in particular the relation

[� i ; � j ]+ = 2� ij (B.8)

whereasthe spacepart is besthandled using commutator relations. We will thereforerear-
range the commutator expressionto a form that alows a more straightforward evaluation.
We then employ the commutator relations

[AB ; C] = A [B ; C] + [A; C] (a)

[A; B C] = [A; B ] C + B [A; C] (b)

[AB ; C]+ = [A; C]+ B + A [B ; C] (c)

[A; B C]+ = [A; B ]+ C � B [A; C] (d)

(B.9)

Consider �rst the inner anticommutator. Using Eq.B.9c it can be expandedas

[� 1j p1j ; � 1k � 2m M km ]+ = [� 1j ; � 1k � 2m M km ]+ p1j + � 1j [p1j ; � 1k � 2m M km ] (B.10)

Using Eq.B.9d the �rst term is rearrangedto

[� 1j ; � 1k � 2m M km ]+ p1j = [� 1j ; � 1k ]+ � 2m M kmp1j � � 1k [� 1j ; � 2m M km ] p1j

= 2� j k � 2m M kmp1j

(B.11)

and using Eq.B.9b the secondterm becomes

� 1j [p1j ; � 1k � 2m M km ] = � 1j [p1j ; � 1k � 2m ] M km + � 1j � 1k � 2m [p1j ; M km ]

= � 1j � 1k � 2m [p1j ; M km ]
(B.12)

The two surviving terms are processedthrough the outer anticommutator using the same
techniques and �nally gives four terms

�
� 2i p2i ; [� 1j p1j ; � 1k � 2m M km ]+

�
+

= 4M ij p1i p2j (a)

+ 2� 2i � 2m [p2i ; M j m ] p1j (b)

+ 2� 1j � 1k [p1j ; M ki ] p2i (c)

+ � 2i � 2m � 1j � 1k [p2i ; [p1j ; M km ]] (d)

(B.13)
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The �nal term can be simpli�ed by noting that

[p2i ; [p1j ; M km ]] = (p2i p1j M km ) (B.14)

where the parenthesis indicate that p2i p1j act on M km and not on the wave function.
Products of � - terms are handled by the relation

� i � j = � ij + i� ij k � k (B.15)

Consider the Gaun t term . We make the identi�cation

M km = � � km r � 1
12 (B.16)

which meansthat we needthe relations

�
p1i ; r � 1

12

�
= ir � 3

12 r12i
�
p2i ; r � 1

12

�
= � ir � 3

12 r12i

p2i p1j r � 1
12 = 3r12i r12j r � 5

12 � (4� =3)� (r 12)� ij � � ij r � 3
12

(B.17)

The latter relation may be comparedto Eq.(2.96) in Moss[40]. The contribution from the
Gaunt-term to the Breit-Pauli Hamiltonian is therefore

ĝGaunt : �
1

m2c2r12
(p1 � p2) (a)

�
1

2m2c2r 3
12

[� 2 � (r 12 � p1) + (r 12 � r 1)] (b)

+
1

2m2c2r 3
12

[� 1 � (r 12 � p2) + (r 12 � r 2)] (c)

�
1

4m2c2 (� 2 � p2) (� 1 � p1) (� 1 � � 2) r � 1
12 (d)

(B.18)

Further processingand replacing � with � gives

ĝGaunt : �
1

m2c2r12
(p1 � p2) (a)

+
1

2m2c2r 3
12

[� 1 � (r 12 � p2) � � 2 � (r 12 � p1)] (b)

+
1

4m2c2

�
r � 3

12 (� 1 � � 2) � 3r � 5
12 (� 1 � r 12) (� 2 � r 12) � (8� =3) (� 1 � � 2) � (r 12)

�
(c)

�
1

2m2c2r 3
12

(r 12 � r 12) (d)

�
1

m2c2 � � (r 12) (e)
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(B.19)

For gauge-dep enden t term we �nd

M km = �
1
2

r 1k r 2m r12 (B.20)

where we again note r 1 and r 2 act only on r 12 and not on the wave function. The
contribution from the gauge-dependent term to the Breit-Pauli Hamiltonian is therefore

ĝgauge : �
1

2m2c2 r 2i r 1j r12p1j p2i (a)

+
1

2m2c2r 3
12

(r 12 � r 1) (b)

�
1

2m2c2r 3
12

(r 12 � r 2) (c)

+
1

8m2c2 (� 2 � r 2) (� 2 � r 2) (� 1 � r 1) (� 1 � r 1) r12 (d)

(B.21)

The �nal term may be collapsedinto

1
8m2c2 r 2

1r 2
2r12 (B.22)

Further processingand replacing � with � gives

ĝgauge : �
1

2m2c2 (p1 � r 1) (p2 � r 2) r12 (a)

+
1

2m2c2r 3
12

(r 12 � r 12) (b)

+
1

m2c2 � � (r 12) (c)

(B.23)

The reducedBreit term is obtained by combining Eq.(B.19) and Eq.(B.23):

ĝB r eit :
1

m2c2

�
r � 1

12 (p1 � p2) +
1
2

(p1 � r 1) (p2 � r 2) r12

�
(a)

+
1

2m2c2r 3
12

[� 1 � (r 12 � p2) � � 2 � (r 12 � p1)] (b)

+
1

4m2c2

�
r � 3

12 (� 1 � � 2) � 3r � 5
12 (� 1 � r 12) (� 2 � r 12) � (8� =3) (� 1 � � 2) � (r 12)

�
(c)

(B.24)
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The �rst term in Eq.(B.24) is the orbit-orbit interaction in the form given by Huang [146],
wherer 1 and r 2 operateonly on r 12 and not on the wave function. It is straightforwardly
rearrangedto its more familiar form

1
2m2c2

�
r � 1

12 (p1 � p2) + r � 3
12 (p1 � r 12) (p2 � r 12)

�
(B.25)

Note that the two forms of the orbit-orbit interaction corresponds to the two forms of the
Breit term.
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App endix C

Symmetry in relativistic systems

C.1 General overview

Theses notes are based on tw o lectures held at the University of Tr oms�
December 1994.

The full symmetry group of a dynamical systemconsistsof all operators that commute
with its Hamiltonian. Symmetry operations are unitary or antiunitary . Here we will only
considerunitary symmetry operationsacting on spatial and spin coordinatesof the system.
The non-relativistic Hamiltonian has the general form

Ĥ = T̂ + V̂ (C.1)

The kinetic energyoperator T̂ is totally symmetric under any symmetry operation, whereas
the potential energy operator V̂ determines the symmetry of the system. In molecular
systemsthe translation of the center of mass is separatedout, so that our discussionof
symmetry will be limited to point group operations that keepat least onepoint �xed. We
may write a generalpoint group symmetry operator as

Ĝ = Ĝr (� r ; n r ; pr ) Ĝ� (� � ; n � ; p� ) ; pi = 0; 1 (C.2)

where Ĝr (� r ; n r ; pr ) and Ĝ� (� � ; n � ; p� ) act on spatial r and spin � coordinates, respec-
tiv ely. They have the form

Ĝ (�; n; p) = îpR̂ (�; n) ; (p = 0; 1) (C.3)

where î represent inversion and R̂ (�; n) is a rotation � about an axis given by the unit
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vector n. Special casesare

Rotation: Ĝ (�; n; 0)
Inversion: Ĝ (0; n; 1) (arbitrary n)
Reection: Ĝ (� ; n; 1)
Improper rotation: Ĝ (�; n; 1)

(C.4)

The action of a symmetry operation on a function is determined by its action on the
coordinates

Ĝ (Ĝ(r ; � )) =  (r ; � ) ) Ĝ (r ; � ) =  (Ĝ� 1(r ; � )) (C.5)

The non-relativistic Hamiltonian is spin-free,which allows a separatehandling of spin
and spatial symmetry. The spin may be integrated out of equations and one may form
spin-free functions adapted to point group symmetry. In the relativistic domain the spin
and spatial degreesof freedomare coupledand no such separation is possible. In a molec-
ular system with an even(odd) number of electrons, the eigenfunctionsof the electronic
Hamiltonian have integral(half-integral) spin and may be denoted boson (fermion) func-
tions. A striking di�erence between bosonand fermion functions, is that the latter type
functions change sign under a rotation 2� about an arbitrary axis, which has in fact
beenveri�ed experimentally in both neutron and NMR interfermometry experiments. For
bosonfunctions a rotation 2� correspond to the identit y operation.

The symmetry of fermion functions is usually handled using double groups. Double
groups are introduced by adding an extra element E representing a rotation 2� about
an arbitrary axis and therefore commuting with all symmetry operations. By this 'tric k'
it is possibleto recover all the results of standard group theory. In these notes we shall
derive explicit representations of the various point group operations in spatial and spin
coordinates. We shall seethat the resulting representations for rotations are completely
congruent with what is obtained from double group theory. For improper rotations in-
volving, there is a decisive di�erence that requires further exploration.

C.2 Notation

In what follows we employ the following notation

� the Einsteins summation convention: a repeated index is taken to mean summation
over all possiblevaluesof the index

� the three-dimensional Levi-Cevita symbol

� ij k =

8
<

:

+1 if ijk is an even permutation of 1,2,3
� 1 if ijk is an odd permutation of 1,2,3

0 for all other cases
(C.6)
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We note the relation � ij k � il m = � j l � km � � j m � kl

Using the above notation scalar and vectors products may be expressedas

A � B = A i B i ; A � B = ei � ij kA j Bk (C.7)

whereei areunit vectorsalong the main coordinate axes. Alternativ elym, a vector product
can be written as a 3 � 3 determinant

A � B =

�
�
�
�
�
�

e1 e2 e3

A1 A2 A3

B1 B2 B3

�
�
�
�
�
�

(C.8)

from which we seethat a general 3 � 3 determinant can be expressedin terms of the
Levi-Cevita symbol

det (A ) =

�
�
�
�
�
�

A11 A12 A13

A21 A22 A23

A31 A32 A33

�
�
�
�
�
�

= � ij kA1i A2j A3k (C.9)

We may generalizeto

� ij kA l i Amj Ank = � lmn det (A ) (C.10)

C.3 Rotations

C.3.1 Rotation about main axes

A rotation ! of a function about the z axis correspond to a rotation � ! of coordinates:

x0 = r sin � cos(� � ! ) = r sin � cos� cos! + r sin � sin � sin !
= x cos! + y sin!

y0 = r sin � sin(� � ! ) = � r sin � cos� sin ! + r sin � sin � cos!
= � x sin! + y cos!

z0 = r cos�
= z

(C.11)

Consider an in�nitesimal rotation d! about the z-axis. We usethe relations

sind! � d! ; cosd! � 1 (C.12)

which gives

dr
0

=
�
x0 � x; y0� y; z0 � z

�
= (y; � x; 0) d! (C.13)
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The resulting function may be written as a �rst order Taylor expansion:

 (r
0
) �  (r ) + dr � r  (r ) = [1 + d! (y

d
dx

� x
d
dy

)] (r ) = [1 � id! l̂z] (r ) (C.14)

From the equivalenceof the main axeswe conclude

1 � d! l̂x in�nitesimal rotation about the x-axis

1 � d! l̂y in�nitesimal rotation about the y-axis

1 � d! l̂z in�nitesimal rotation about the z-axis

(C.15)

C.3.2 Rotation about arbitrary axis

We consider an in�nitesimal rotation d� about an arbitrary axis identi�ed by the unit
vector n. We employ the notation R̂ (d�; n) to describe this rotation. By geometric
construction we �nd

dr = � d� (n � r ) (C.16)

Insertion in a �rst order Taylor expansionof the rotated function gives

 (r
0
) �  (r ) + dr � r  (r ) =  (r ) � d� (n � r ) � r  (r ) = [1 � d� n � (r � r )]  (r ) (C.17)

This allows the identi�cation

R̂ (d�; n) = 1 � id�
�

n � l̂
�

(C.18)

where l̂ is the angular momentum operator (in atomic units)

l̂ = r̂ � p̂ = � i (r � r ) (C.19)

The operator for a �nite rotation is generatedfrom in�nitesimal rotations

R̂ (�; n) = lim
k!1

�
R̂

�
�
k

; n
�� k

= lim
k!1

�
1 � i

�
k

�
n � l̂

� � k

= e� i (n �̂l ) (C.20)

C.3.3 Angular momen tum | a short rep etition

In the previous section we have seenthat the operators for angular momentum are gener-
ators for in�nitesimal rotations about the main axes. We therefore give a short summary
of angular momentum theory.
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Genral angular momentum operators are de�ned from the commutation relations
h
ĵ x ; ĵ y

i
= i ĵ z ;

h
ĵ y ; ĵ z

i
= i ĵ x ;

h
ĵ z; ĵ x

i
= i ĵ y (C.21)

The commutation relation may be written in a more compact form by

ĵ � ĵ = i ĵ (C.22)

We denoteeigenfunctionsof angular momentum by  j m . The following relations apply:

ĵ 2 j m = j (j + 1) j m

ĵ z j m = m j m

(C.23)

We introduce ladder operators ĵ + and ĵ �

ĵ � = ĵ x � i ĵ y (C.24)

whoseoperation on

ĵ �  j m =
p

(j (j + 1) � m(m � 1)) j;m � 1 (C.25)

For later usewe note the relations:

j x =
1
2

(j + + J� ) ; j y = � i
1
2

(j + � j � ) (C.26)

C.3.4 Matrix represen tations of rotation operators

The product of two rotations is a rotation. The set of rotation operators

R̂ (�; n) = e� i� (n �ĵ ) (C.27)

form a continuousgroup, the full rotation group R3. Irreducible representations of the full
rotation group are labeledby j and are (2j + 1)-fold degenerate.Matrix representations of
ĵ and R̂ (�; n) may be constructed in a basis f  j mg for any j. In this section we consider
matrix representations of j = 1

2 og j = 1.

Case 1: j = 1
2

Basis for j = 1
2 are the spin functions � and � and we set j = s. We have the relations

sz� = 1
2 � sz� = � 1

2 �

s+ � = 0 s+ � = �

s� � = � s� � = 0

(C.28)
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from which we obtain the matrix representations

sz =
1
2

�
1 0
0 � 1

�
; s+ =

1
2

�
0 1
0 0

�
; s� =

1
2

�
0 0
1 0

�
(C.29)

Using (C.26) we obtain

sx =
1
2

�
0 1
1 0

�
; sy =

1
2

�
0 � i
i 0

�
(C.30)

In sum we have

s =
1
2

� (C.31)

where � are Pauli spin matrices. We note the property

� i � j = � ij + i� ij k � k =
�

1 ; i = j
i� ij k � k ; i 6= j

(C.32)

Important relations are

(� � A ) (� � B ) = A � B + i � � (A � B ) (C.33)

and

(� � A ) (� � B ) (� � C)
= iA � (B � C) + (� � A ) (B � C) � (� � B ) (A � C) + (� � C) (A � B )

(C.34)

Matrix representaitons of the rotation operators for j = 1
2 is obtained from

R̂
1
2 (�; n) = e� i� (n �ŝ) ! R

1
2 (�; n) = e� i 1

2 � (n �� ) =
X

m=0

(� i )m

� 1
2 �

� m

m!
(n � � )m (C.35)

Considerablesimpli�cation is obtained by noting that

(n � � )2 = n j � j nk � k = n i n i + i� ij k � i n j nk = 1 + i � (n � n) = 1 (C.36)

which implies

(n � � )2m = 1 ; (n � � )2m+1 = (n � � ) (C.37)

We may therefore write

R
1
2 (�; n) =

P
n=0 (� i )n ( 1

2 � )n

n! (n � � )n

=
P

n=0 (� i )2n ( 1
2 � )2n

(2n)! (n � � )2n +
P

n=0 (� i )(2n+1) ( 1
2 � )(2 n +1)

(2n+1)! (n � � )(2n+1)

=
P

n=0 (� 1)2n ( 1
2 � )2n

(2n)! � i (n � � )
P

n=0 (� 1)2n ( 1
2 � )(2 n +1)

(2n+1)!

= cos1
2 � � i (n � � ) sin 1

2 �

(C.38)
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Case 2: j = 1

As basis for j = 1 we may usethe spherical harmonic functions

Y1;1 = �
� 3

8 �
�

sin � ei� / � 1p
2

(x + iy )

Y1;0 =
� 3

4 �
�

cos� / z

Y1;� 1 =
� 3

8 �
�

sin � e� i� / 1p
2

(x � iy )

(C.39)

In the basisof thesefunctions the angular momentum operator is represented by

lx =
1

p
2

2

4
0 1 0
1 0 1
0 1 0

3

5 ; ly =
1

p
2

2

4
0 � i 0
i 0 � i
0 i 0

3

5 ; lz =
1

p
2

2

4
1 0 0
0 0 0
0 0 � 1

3

5 (C.40)

We shall, however, use a basis of Cartesian coordinates (q1 = x,q2 = y og q3 = z) to
generate representations of the angular momentum and rotation operators. som basis.
The angular momentum operators may be written as

l̂ = � i (r � r ) = � iei � ij kqj
�

� qk
(C.41)

so that elements of representation matrices in the Cartesian basis is given by
D

qj

�
�
� l̂

�
�
� qk

E
= � iei � il m

D
qj

�
�
�ql

�
� qm

�
�
� qk

E
= � iei � il m � km hqj j ql i

= � iei � il m � km � j l w = � iei � ij k

(C.42)

The full representation matrices can now be written as

� x =

2

4
0 0 0
0 0 � i
0 i 0

3

5 ; � y =

2

4
0 0 i
0 0 0

� i 0 0

3

5 ; � z =

2

4
0 � i 0
i 0 0
0 0 0

3

5 (C.43)

In the coordinate basis the rotation operators are given by

R̂ (�; n) = e� i� (n �ĵ ) ! R 1 (�; n) = e� i� (n �� ) =
X

m=0

(� i )m (� )m

m!
(n � � )m (C.44)

In order to obtain a matrix representation of R̂1 we usethe relations

(n � � ) j k = � in i � ij k

(n � � )2
j m = � n i n l � ij k � l km = � n i n l (� im � j l � � il � j m )

= � n j nm + n i n i � j m = � j m � n j nm

(n � � )3
lm = � in k � kl j (� j m � n j nm ) = � in k � klm + in kn j nm � kl j

= � in k � klm = (n � � ) lm

(C.45)
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We may conclude

(n � � )2m = (n � � )2 = I � n 
 n ; (n � � )(2m+1) = (n � � ) (C.46)

Note that the relation (n � � )3 = (n � � ) doesnot imply (n � � )2 = 1 soncethe matrix (n � � )
is singular. We now write

R 1 (�; n) =
P

n=0 (� i )n (� )n

n! (n � � )n

= 1 +
P

n=1 (� i )2n (� )2n

(2n)! (n � � )2n +
P

n=0 (� i )(2n+1) (� ) (2 n +1)

(2n+1)! (n � � )(2n+1)

= 1 + (n � � )2 P
n=1 (� 1)2 (� )2n

(2n)! + i (n � � )
P

n=0 (� 1)2n ( 1
2 � )(2 n +1)

(2n+1)!

= 1 + (1 � cos� )(n � � )2 + i (n � � ) sin �

(C.47)

Using the trigonometric identities

cos2 1
2 � + sin2 1

2 � = 1
cos2 1

2 � � sin2 1
2 � = cos�

(C.48)

this is simpli�ed to

R 1 (�; n) = 1 + i (n � � ) sin � � 2(n � � )2 sin2 1
2

� (C.49)

C.3.5 Homomorphism between SO(3) and SU(2)

Consider the transformation of the Pauli spin matrices under the rotation operators

R̂ (�; n) � j R̂y (�; n) = R̂ (�; n) � j R̂ (� �; n) = � i A ij (�; n) (C.50)

This is best done by consideringthe transformation

R̂ (�; n) (� � m) R̂ (� �; n)

=
�
cos1

2 � � i (� � n) sin 1
2 �

�
(� � m)

�
cos1

2 � + i (� � n) sin 1
2 �

�

= (� � m) cos2 1
2 � + i [(� � m) ; (� � n)] cos1

2 � sin 1
2 � + (� � n) (� � m) (� � n) sin2 1

2 �

= (� � m) cos2 1
2 � + � � (n � m) sin � + [2(� � n) (m � n) � (� � m)] sin2 1

2 �

= (� � m) + � � (n � m) sin � + [(� � n) (m � n) � (� � m)] 2sin2 1
2 �

(C.51)
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Setting m = ek � j k the transformation of individual � j can be singled out. After reindex-
ation we �nd

A j k (�; n) = � j � j k + � j n i � ij k + � j (n j nk � � j k) 2sin2 1
2

� (C.52)

Comparison with (C.49) shows

A j k (�; n) = Rj k (�; n) (C.53)

It can be shown that the unitary transformation matrices R
1
2 (�; n) have determinant

1 and form the special unitary group SU(2), whereas the matrices R 1 (�; n) form the
group SO(3) of orthogonal matrices with determinant 1. The transformation of Pauli spin
matrices under elements of SU(2) provide a mapping of SU(2) into SO(3). The mapping
is straighforwardly shown to be a homomorphism,but it is not single-valued sincewe have

R
1
2 ((� + 2� ) ; n) = � R

1
2 (�; n) (C.54)

whereas

R 1 ((� + 2� ) ; n) = R 1 (�; n) (C.55)

We see that rotations represented by R 1 (�; n) have periodicity 2� , whereas rotations
represented by R

1
2 (�; n) have periodicity 4� . This is of consequencewhen we consider

irreducible representations.

C.3.6 Direct pro duct basis

The spin functions � and � form a basisfor rotations j = 1
2 . A basisfor j = 1 (and j = 0)

in terms of spin functions is generatedby forming the direct product

�
�
�

�



�
�
�

�
=

2

6
6
4

��
��
� �
� �

3

7
7
5 (C.56)

The resulting functions are however, not all eigenfunctions of ĵ og ĵ z, but this can be
corrected by the transformation

2

6
6
6
4

1 0 0 0
0 1p

2
1p
2

0
0 0 0 1
0 1p

2
� 1p

2
0

3

7
7
7
5

2

6
6
4

��
��
� �
� �

3

7
7
5 =

2

6
6
6
4

��
1p
2

(�� + � � )
� �

1p
2

(�� � � � )

3

7
7
7
5

=

2

6
6
4

j1; 1i
j1; 0i
j1; � 1i
j0; 0i

3

7
7
5 (C.57)
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This gives the three components of a triplet in addition to a singlet function, which is
what is expected from the coupling of two spins. We may construct a spin analogueto
the Cartesian basis(C.39)as well by the transformation

1
p

2

2

6
6
4

� 1 0 0 1
i 0 0 i
0 1 1 0
0 1 � 1 0

3

7
7
5

2

6
6
4

��
��
� �
� �

3

7
7
5 =

2

6
6
6
4

� 1p
2

(�� � � � )
ip
2

(�� + � � )
1p
2

(�� + � � )
1p
2

(�� � � � )

3

7
7
7
5

(C.58)

We may form corresponding direct products of the symmetry elements, e.g. a rotation �
about the z -axis:

"
e� i 1

2 � 0
0 ei 1

2 �

#




"
e� i 1

2 � 0
0 ei 1

2 �

#

=

2

6
6
4

e� i� 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei�

3

7
7
5 (C.59)

By transforming to the coordinate (Cartesian) basis(C.58) we obtain as expected

2

6
6
4

cos� sin � 0 0
� sin � cos� 0 0

0 0 1 0
0 0 0 1

3

7
7
5 (C.60)

C.4 In version

The properties of a vector under inversion allows a classi�cation of vectors:

î r =
�

� r (polar) vector
r axial vector (pseuodvector)

(C.61)

An exampleof a pseudovector is the angular momentum vector. Correspondingly scalars
can be classi�ed as scalar or pseudoscalars.

î a =
�

a scalar
a pseudoscalar

(C.62)

The inversion operator î commute with all rotations. This is straightforwardly seen
from the e�ect of rotation and inversion on the coordinates:

R̂ (�; n) îqi = R̂ (�; n) (� qi ) = � qj A j i (�; n) = î (qj A j i (�; n)) = î R̂ (�; n) qi (C.63)
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From the above relation it becomesclear that the representation matrix for inversion in
coordinate basis is

i r =

2

4
� 1 0 0

0 � 1 0
0 0 � 1

3

5 (C.64)

which is an ortogonal matrix with determinant -1. From the form of this matrix we may
deducethe representation matrix for inversion in the basisof spin functions � and � :

�
� i 0

0 � i

�



�
� i 0

0 � i

�
=

2

6
6
4

� 1 0 0 0
0 � 1 0 0
0 0 � 1 0
0 0 0 � 1

3

7
7
5 (C.65)

We have set the scalarcomponent equal to � 1 corresponding to a pseudoscalar. The 4� 4
inversion matrix is invariant under transformation to coordinate or spherical harmonic
basis.

Note that the representation matrix for inversion in spin basisare of order four:

i = � iI 2; i2 = � I 2; i3 = iI 2; i4 = I 2 (C.66)

C.5 Spatial symmetry in relativistic systems

The spin operation may be chosen freely since the non-relativistic Hamiltonian is spin
free. We next considera relativistic systemand indicate this approxiamtely by adding the
spin-orbnit operator Ĥ so

Ĥ so = c� � (r V � p) (C.67)

We consider the transformation of Ĥ so under a generalsymmetry operation k̂i (C.2):

k̂r c� i � ij k
� V
� qj

pk k̂y
r

= cĜ�
�
� � ; m � ; p0

�

�
� i Ĝ�

�
� � � ; m � ; p0

�

�
� ij kĜ (� r ; n r ; pr ) �

� qj
Ĝ (� � r ; n r ; pr ) V

Ĝ (� r ; n r ; pr ) pkĜ (� � r ; n r ; pr )

= c� l � ij k
� V
� qm

pnA l i (� ; m) Amj (� r ; n r ) Ank (� r ; n r )

(C.68)

where we have usedthat the potential V is totally symmetric under the point group. We
seethat Ĥ so is not totally symmetric under k̂i . However, by inserting � = � r and m = n r
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we obtain

k̂r c� i � ij k
� V
� qj

pk k̂y
r

= c� l � ij k
� V
� qm

pnA l i (� r ; n r ) Amj (� r ; n r ) Ank (� r ; n r )

= c� l � lmn
� V
� qm

pn det [A (� r ; n r )]

= c� l � lmn
� V
� qm

pn

(C.69)

where we have used (C.10) and the fact that the rotation matrix A has determinant 1.
From the above we seethat symmetry operators in relativistic systemsare generallygiven
by:

k̂r = Ĝ (� r ; n r ; pr ) Ĝ� �
� � ; n r � ; p�

�
(C.70)

that is, the operation in spatial and spin coordinates must be identical.

C.6 Double groups

C.6.1 Binary symmetry operations

Let us �rst look at binary operations associated with the main axesIn spin basisthey are
represented by

E Identit y ! I 2

C2(x) Rotation � about the x-axis ! � i� x

C2(y) Rotation � about the y-axis ! � i� y

C2(z) Rotation � about the z-axis ! � i� z

î Inversion ! � iI 2

�̂ yz Reection in the yz-plane ! � � x

�̂ zx Reection in the zx-plane ! � � y

�̂ xy Reection in the xy plane ! � � z

(C.71)

C.6.2 Example: D2

Consider the group D2 = f E; C2(z); C2(y); C2(x)g. The group multiplication table gives

E C2(z) C2(y) C2(x)
C2(z) E C2(x) C2(y)
C2(y) C2(x) E C2(z)
C2(x) C2(y) C2(z) E

(C.72)
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The corresponding multiplication table in spin representation is er:

I 2 � i� z � i� y � i� x

� i� z � I 2 � i� x i� y

� i� y i� x � I 2 � i� z

� i� x � i� y i� z � I 2

(C.73)

By comparisonwe seethat the multiplication tables di�er by phasephactors

1 1 1 1
1 � 1 1 � 1
1 � 1 � 1 1
1 1 � 1 � 1

(C.74)

causedby the doubleperiodicity of the elements. A correct representation may beobtained
in two ways;

� by a projective (ray) representation instead of the regular vector representation

Gi Gj = Gk ) D (Gi )D (Gj ) = ! (Gi ; Gj )D (Gk ) (C.75)

where ! (Gi ; Gj ) is phasefactor that dependesof the order of operators G i ; Gj .

� Double groups: The periodicity of binary operations i extended from 2� to 4� .

Double groupsareusually introducedby adding an extra element E representing a rotation
2� about an arbitrary axis and therefore commuting with all symmetry operations. We
shall proceeda bit more stringently using our representation in spin basisThe element E
is the result of two binary operations about the sameaxis and is therefore represented by

E = R̂ (� ; n) R̂ (� ; n) ) E = � i (� � n) � i (� � n) = � I 2 (C.76)

By introducing the notation C2 = C2E we obtain the following multiplication table

E C2(z) C2(y) C2(x) E C2(z) C2(y) C2(x)

C2(z) E C2(x) C2(y) C2(z) E C2(x) C2(y)

C2(y) C2(x) E C2(z) C2(y) C2(x) E C2(z)

C2(x) C2(y) C2(z) E C2(x) C2(y) C2(z) E

E C2(z) C2(y) C2(x) E C2(z) C2(y) C2(x)

C2(z) E C2(x) C2(y) C2(z) E C2(x) C2(y)

C2(y) C2(x) E C2(z) C2(y) C2(x) E C2(z)

C2(x) C2(y) C2(z) E C2(x) C2(y) C2(z) E

(C.77)
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In order to construct a character table the distribution of symmetry operations among
classesneed to be determined. Two operations belong two the sameclassif there exists
a third element in the group that bring the corresponding symmetry elements into each
other. as we have introduced periodicity 4� , C2 og C � 1

2 are no longer identical. C2 og
C � 1

2 belongto the sameclassif the group contains a binary rotation normal to the rotation
axis or if the group contains a vertical plane. A horizontal plane will reversethe direction
of the axis, but also the direction of rotation, so that the two e�ects cancelout.

In the double group D 2 we have binary operations perpendicular two each other,
so that elements C2 og C2 are in the same class. The double group D 2 therefore has
�v e classesf (E); (E ); (C2(z); C2(z)) ; (C2(y); C2(y)) ; (C2(x); C2(x))g , and thereby �v e ir-
reducible representations. We have one extra irrep comparedto the single group D 2. The
extra irrep is spanned by functions with half-integer values of angular momentum and
they are therefore denoted fermion irreps. The regular irreps spannedby integer valuesof
angular momentum are the termed bosonirreps.

The double group D 2 has a total of eight elements, so that the extra irrep must be
twodimensional (it follows from the conditiona that the sum of squaresof the dimension
of irreps equals the number of operations). This allows us to construct the following
character table:

D 2 E E 2C2(z) 2C2(y) 2C2(x)

A 1 1 1 1 1 1p
2

(�� � � � )

B1 1 1 1 � 1 � 1 z � 1p
2

(�� + � � )

B2 1 1 � 1 1 � 1 y ip
2

(�� + � � )

B3 1 1 � 1 � 1 1 x 1p
2

(�� � � � )

E 1
2

2 � 2 0 0 0 (�; � )

(C.78)

We seethat the bosonirreps duplicate the correponding irreps of the singlegroups, which
is understandablesincethey are spannedby functions for which the symmetry operations
have periodicity 2� . The character of E for the fermion irrep follows from its dimensional-
it y. The sameholds for the character of E , but now with a minus sign sinceE = � I 2j +1 .
The character of the other operations can be deducedfrom the little orthogonality theo-
rem.

In the character table we give examplesof spin functions that span the various irreps.
They can be obtained by projection operator. Note that the components of the triplet
do not span separate boson irreps, but form linear combinations corresponding to the
characters.



App endix D

Diagonalization of quaternion
Hermitian matrix

We will consider the diagonalization of a quaternion Hermitian matrix

H = H 0 + H 1�� + H 2�� + H 3�k = H T
0 � H T

1 �� � H T
2 �� � H T

3
�k = H y (D.1)

From the condition of Hermiticit y we seethat H 0 is a real symmetric matrix, whereas
H f 1� 3g are real antisymmetric matrices. The diagonalization of H proceedsin four steps:

1. Reduction to quaternion Hermitian tridiagonal matrix by a quaternion analogueof
the Householdermethod

2. Reduction to real symmetric tridiagonal matrix

3. Diagonalization of real symmetric tridiagonal matrix

4. Backtransformation to obtain eigenvectors

The �rst two steps are handled by the routine QHTRIDand the �nal step by QHTRBK.
The third step is hadled by the standard TQL2routine using the QL algorithm which
is described in [169]. When only eigenvalues and no eigenvectors are desired, the routine
TQLRATis called insteadof TQL2and executionterminated after obtaining the eigenvalues.

A quaternionic number q and its conjugate q� is given by

q = a + b�� + c�� + d�k; q� = a � b�� � c�� � d�k (D.2)

in which the quaternion units ��, �� and �k obey the following multiplication rules

��2 = ��2 = �k
2

= ���� �k = � 1 (D.3)
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From thesemultiplication rules it follows that quaternion number do not commute under
multiplication

qaqb = [a1 + ia2 + j a3 + ka4] [b1 + ib2 + j b3 + kb4]
= [a1b1 � a2b2 � a3b3 � a4b4]
+ �� [a1b2 + a2b1 + a3b4 � a4b3]
+ �� [a1b3 � a2b4 + a3b1 + a4b2]
+ �k [a1b4 + a2b3 � a3b2 + a4b1] 6= qbqa

(D.4)

Note, however, that the real part of the product is independent of order. This meansthat
in devising an algorithm for quaternion diagonalization great care has to be taken in not
reversing the order of quaternion multiplication. The routine for quaternion number is in
its entirely written in terms of real variables.

D.1 Quaternion Householder matrices

We considera quaternion Householdermatrix P of the form

P = 1 � 2w � w y; jw j2 = w yw = 1 (D.5)

The matrix P is unitary as

P yP = P2 =
�
1 � 2w � w y

� �
1 � 2w � w y

�

= 1 � 2w � w y � 2w � w y + 4
�
w � w y

� �
w � w y

�

= 1 � 2w � w y � 2w � w y + 4w jw j2 � w y = 1
(D.6)

We now expressthe matrix P as

P = 1 �
u � uy

H
; H �

1
2

juj2 (D.7)

where u can be any vector. We choose

u = x + jx j
x1

jx1j
e1 (D.8)

where e1 is the unit vector [1; 0; : : : ; 0]T and x is an arbitrary quaternion vector. This
gives

H = 1
2uyu

=
�
xy + jx j

x �
1

jx1j
e1

�
�
�
x + jx j

x1

jx1j
e1

�

= jx j2 + jx j jx1j

(D.9)
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We then consider the action of P on the vector x:

P � x = x �
u
H

�
�

xy + jx j x �
1

jx1 j e1

�
� x

= x �
u �

h
jx j2 + jx j jx1 j2

jx1 j

i

jx j2 + jx j jx1j
= x � u

= jx j x1
jx1 j e1

(D.10)

We seethat P operating on x givesa vector in which all elements are zero except for the
�rst element, which is x1

jx1 j We may note that operating on x with

x �
1

jx1j
P (D.11)

givesa real vector in which all elements are zero except for the �rst , which is jx j.

D.2 Reduction to quaternion Hermitian tridiagonal matrix

We want to reduce a quaternion n � n Hermitian matrix H to a quaternion Hermitian
tridiagonal matrix T through a �nite seriesof quaternion unitary transformations. Using
quaternion Householdermatrices (D.7) this may be accomplishedin n � 2 steps.

Our quaternion Hermitian matrix H may be written as

H = H (0) =
[n � 1] [1]

[n � 1] A (0) b (0)

[1] b (0)y B (0)
(D.12)

where

b (0)y = [hn1; hn2; hn3; : : : ; hn;n � 1] ; B (0) = hnn (D.13)

We now choosea Householdermatrix of the form

P (1) =
�

Q (1) 0
0 I 1

�
: Q (1) = I (n� 1) �

u (1) u (1)y

H
; H =

1
2

�
�
�u (1)

�
�
�
2

(D.14)

with

u (1)y = b (0)y +
�
�
�b (0)

�
�
�

b(0) �
(n� 1)�

�
�b

(0)
(n� 1)

�
�
�
e(n� 1) ; H =

�
�
�b (0)

�
�
�
2

+
�
�
�b (0)

�
�
�
�
�
�b(0)

(n� 1)

�
�
� (D.15)
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The unitary transformation P (1) A (0) P (1) then gives

P (1) A (0) P (1) =
�

Q (1) A (0) Q (1) Q (1) b (0)

b (0)yQ (1) B (0)

�
(D.16)

with

b (0) Q (1) =
�
�
�b (0)

�
�
�

b(0) �
(n� 1)�

�
�b

(0)
(n� 1)

�
�
�
e(n� 1) =

2

40; 0; : : : ; 0;
�
�
�b (0)

�
�
�

h(0)
(n� 1)�

�
�h

(0)
(n� 1)

�
�
�

3

5 (D.17)

We seethat the elements of b (0) has been zeroed out, except for the �nal element. We
may now write the transformed matrix as:

H (1) =

[n � 2] [2]
[n � 2] A (1)

�
b (1) 0

�

[2]
�

b (1)y

0

�
B (1)

(D.18)

where

B (1) =

2

6
6
6
4

h(1)
(n� 1);(n� 1)

�
�b (0)

�
� b(0)

( n � 1)�
�
�b

(0)
( n � 1)

�
�
�

�
�b (0)

�
� b(0) �

( n � 1)�
�
�b

(0)
( n � 1)

�
�
�

h(0)
nn

3

7
7
7
5

(D.19)

After step (i � 1) our quaternion matrix has the structure

H (i � 1) =

[n � i ] [i ]
[n � i ] A (i � 1)

�
b (i � 1) 0(i � 1)

�

[i ]
�

b (1)y

0(i � 1)y

�
B (i � 1)

(D.20)

Here 0(i � 1) is a (i � 1) � (n � i ) zero matrix while B (i � 1) is a i � i quaternion tridiagonal
matrix. For step i we introduce the index m de�ned by m = n � i and choose the
Householdermatrix

P (i ) =
�

Q (i ) 0i

0i I i

�
; Q (i ) = I m �

u (i )u (i )y

H
; H =

1
2

�
�
�u (i )

�
�
�
2

(D.21)

with

u (i )y = b (i � 1)y +
�
�
�b (i � 1)

�
�
�

b(i � 1)�
m�
�
�b

(i )
m

�
�
�

em ; H =
�
�
�b (i )

�
�
�
2

+
�
�
�b (i )

�
�
�
�
�
�b(i )

m

�
�
� (D.22)
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After (n � 2) stepsthe quaternion Hermitian matrix H has beenreducedto a quaternion
Hermitian tridiagonal matrix T :

T = VHV y; V =
n� 2Y

i =1

P (i ) (D.23)

D.3 Reduction to real symmetric tridiagonal matrix

The quaternion Hermitian tridiagonal matrix T Q has the structure

T Q =

2

6
6
6
6
6
6
6
6
6
6
6
6
4

h(n� 2)
11 h(n� 2)�

21 0 : : : 0 0 0

h(n� 2)
21 h(n� 2)

22 c(n� 2)� : : : 0 0 0
0 c(n� 2) h(n� 3)

33 : : : 0 0 0
...

...
...

. . .
...

...
...

0 0 0 : : : h(1)
(n� 2);(n� 2) c(2) � 0

0 0 0 : : : c(2) h(1)
(n� 1);(n� 1) c(1) �

0 0 0 : : : 0 c(1) h(0)
nn

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(D.24)

where

c(i ) =
�
�
�b(i � 1)

�
�
�

b(i � 1)�
(m)�

�
�b

(i � 1)
(m)

�
�
�

=
�
�
�b(i � 1)

�
�
�

h(i � 1)
(m+1) ;m�

�
�h

(i � 1)
(m+1) ;m

�
�
�

(D.25)

We now consider the unitary transformation

T R = � yT Q � ; � y� = I ; � ij = � i � ij (D.26)

transforming T Q to a real symmetric tridiagonal matrix T R using the quaternion unitary
diagonal matrix � . For the casen = 3 the transformation is

T R = � yT Q � =

2

4
� �

1 0 0
0 � �

2 0
0 0 � �

3

3

5

2

4
t11 t �

21 0
t21 t22 t �

32
0 t32 t33

3

5

2

4
� 1 0 0
0 � 2 0
0 0 � 3

3

5

=

2

4
� �

1 t11� 1 � �
1 t �

21� 2 0
� �

2 t21� 1 � �
2 t22� 2 � �

2 t �
32� 3

0 � �
3 t32� 2 � �

3 t33� 3

3

5

(D.27)
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Using the unitarit y of � and the fact that the diagonal elements of T Q are real, we
obtain:

T R = � yT Q � =

2

4
t11 � �

1 t �
21� 2 0

� �
2 t21� 1 t22 � �

2 t �
32� 3

0 � �
3 t32� 2 t33

3

5 (D.28)

We then �nd:

� 3 = 1

� 2 =
t �
32

jt32j

� 1 =
t �
21

jt21j
t �
32

jt32j
=

t �
21

jt21j
� 2

(D.29)

Generalizing we �nd:

� m =
c(i )�
�
�c(i )

�
� � (m+1) =

h(i � 1)�
(m+1) ;m�

�
�h

(i � 1)
(m+1) ;m

�
�
�
� (m+1) (1 < m < n)

� n = 1

(D.30)

D.4 Implemen tation of tridiagonalization

We now consider the computational expressionsfor the reduction of a quaternion Hermi-
tian matrix to a real symmetric tridiagonal matrix. We �rst consider the matrix:

A (i � 1)Q (i ) = A (i � 1)

"

I m �
u (i )u (i )y

H

#

= A (i � 1) � p (i ) u (i )y (D.31)

where we have introduced the vector p (i ) :

p (i ) �
A (i � 1)u (i )

H
(D.32)

Note that due to the hermiticit y of A we have:

p (i )y =
u (i )yA (i � 1)

H
(D.33)

The full Householder transformation of the subblock A (i � 1) of the matrix H (i � 1) then
becomes:

Q (i )A (i � 1)Q (i ) =

"

I m �
u (i ) u (i )y

H

#
h
A (i � 1) � p (i )u (i )y

i

= A (i � 1) � p (i )u (i )y � u (i )p (i )y + 2u (i ) K u (i )y

(D.34)
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where we have introduced the scalar K de�ned by

K �

"
u (i )yA (i � 1)u

2H 2

#

(D.35)

K is real due to the hermiticit y of A :

K � =

"
u (i )yA (i � 1)yu

2H 2

#

= K (D.36)

If we write

q � p � K u (D.37)

then we have

Q (i )A (i � 1)Q (i ) = A (i � 1) � q(i ) u (i )y � u (i )q(i )y (D.38)

This is the computationally useful formula.

D.5 Eigen vectors

The complete tranformation of the quaternion Hermitian matrix H to a real diagonal
matrix � is given by

� = U yHU ; U = V � O (D.39)

with

V =
Q n� 2

i=1 P (i ) - reduction to quaternion Hermitian tridiagonal matrix
� -reduction to real symmetric tridiagonal matrix
O -reduction to real diagonal matrix

(D.40)

The transformation from a real tridiagonal to real diagonal matrix is handled by the QL
algorithm, described in [169]. From the eigenvectors obtained from the real tridiagonal
matrix we may backtransform to the eigenvectors of the quaternion Hermitian matrix. In
the �rst step the eigenvectorsof the quaternion Hermitian tridiagonal matrix arerecovered:

U (2) = [� O]kj =
nX

i =1

� ik � ik okj = � kkokj (D.41)
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Then follows (n-2) stepsin which the eigenvectors of the full quaternion Hermitian matrix
are recovered. In step i we have

Z (i ) = P (i )Z (i � 1) =
�

Qmm 0mi

0im I ii

� �
Zmm Zmi

Z im Z ii

�
=

�
Qmm Zmn

Q im Z in

�
(D.42)

A computational useful formula is found by expansion:

[QZ ]kj =
X

l

QklZ l j =
X

l

 

� kl � uk
uy

l

H

!

Z l j = Zkj � uksj (D.43)

where we have introduced

sj =
X

l

uy
l

H
Z l j (D.44)



App endix E

Angular part of atomic 2-spinors

In thesenotes angular 2-spinorsand corresponding spherical harmonic functions are tab-
ulated and plotted. The density plots appearing in thesenoteshave beenmadeby Jon K.
L�rdahl.

The angular functions � �;m j appearing in the solutions of the Dirac equation for hy-
drogenlike atoms can be written the angular part of the hydrogenic solutions to the Dirac
equation

� �;m j =
1

p
2l + 1

2

6
6
4

a
q

l + 1
2 + amj Y

m j � 1
2

l

q
l + 1

2 � amj Y
m j + 1

2
l

3

7
7
5 (E.1)

where

� = a(j + 1=2); a = 2(j � l ) = � 1 (E.2)

The Y m
l are spherical harmonic functions (with the Condon-Shortley phaseconvention)

[70]

Y m
l (� ; � ) � (� 1)m

s
2l + 1

2
(l � m)!
(l + m)!

Pm
l (cos� ) eim� (E.3)

de�ned in terms of associated Legendrefunctions

Pm
l (x) =

1
2l l !

�
1 � x2� m=2 dl+ m

dxl+ m

�
x2 � 1

� l
; � l � m � l (E.4)



270 Ch.E Angular part of atomic 2-spinors

E.1 Spherical harmonics

For referencewe tabulate the spherical harmonics up to l = 3

l ml N l ;m polar form Cartesian form

1 0
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4� cos� z

1 � 1 �
q

3
8� sin� e� i� (x � iy )

2 0
q
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16�

�
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3 0
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� 5
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64� sin�

�
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3 � 2
q

105
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q
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64� sin3� e� 3i� x3 � 3ix 2y � 3xy2 � iy 3

(E.5)

Densit y Plots:

Y10 : Y1� 1 :
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Y20 : Y2� 1 : Y2� 2 :

Y30 : Y3� 1 : Y3� 2 :

Y3� 3 :
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E.2 2-spinors

In this section we list the angular 2-spinorsup to j = 7=2. We usethe notation (l)( j; m j )
where (l) = s;p;d; f with referenceto the angular quantum number l.
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