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In tro duction

At his rst lecture on quantum mechanics in Michaelmas term 1945,
Dir ac entered the room to nd it jammed with students. He obviously
did not expect to see so many students at his lecture because he an-
nounced 'This is a lecture on quantum mechanics." No one moved. He
repeated the announcement. Nothing happened again.

S.SHANMUGADHASAN  (1987) [2]

0.1 General overview

Eventhough P. A. M. Dirac, the originator of the relativistic wave equationfor the electron,
stated that relativistic e ects were[3

of no importance in the consideration of atomic and molecular structure and
ordinary chemical reactions,

it has becomeincreasingly clear during the past few decadesthat in many areasof chem-
istry sudh e ects may not be neglected[4, 5]. Discussionsof relativistic e ects are now
entering basic chemistry textb ooks [6], and there is a rapidly expanding literature on
the subject [7, 8, ?]. This aknowledgemen stems largely from the extensive progress
in the developmen of methods and technology which has made chemical systems con-
taining heavy elemernt atoms accessiblefor computational studies. It is found that the
non-relativistic Sdredinger-equation fails to give an adequate description of sud sys-
tems. A well known example is the relativistic e ects on the band structure of metallic
gold[9, 5]. Non-relativistic calculations overestimatesthe gap betweenthe 5d and 6s band
and predicts absorption in the UV region, which would give gold an appearancesimiliar
to that of silver. In atoms, relativity generally leadsto a cortraction of s and p orbitals
and (indirectly) to an expansionof d and f orbitals. In addition the spin-orbit coupling
causesthe ne structure of atomic spectra. The e ect of relativity in molecular systems
is more uncertain and is currently an area of active researti. The interest in the e ects
of relativity sparked in 1992 the establishmen of the programme "Relativistic E ects
in Heavy Elemert Chemistry and Physics"(REHE), sponsoredby the European Science
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Foundation [10]. The goal of this programmeis to spur interest and facilitate cooperation
among European sciertists in the eld.

The starting point of relativistic molecular calculations is the one-electronDirac oper-
ator in the external eld of xed nuclei[11, 12, 13]. The two-electroninteraction is usually
represerted by the standard Coulomb interaction. This operator is clearly not Lorentz
invariant, but may be consideredas the zero-orderterm in a seriesexpansionof the full
two-electroninteraction, which is not available in closedform. First order corrections may
be added in the form of the Gaunt or Breit terms. The e ect of these corrections on
molecular properties is not very well understood, but they appear to be small. The re-
sulting Dirac-Coulomb(-Gaunt/Breit) Hamiltonian leadsto a considerableincreasein the
computational e ort as comparedto the corresponding non-relativistic electronic Hamil-
tonian. This is due to the fact that that the Dirac operator contains spin and leadsto
a 4-componert rather than scalar wave function. In addition the wave function can gen-
erally not be chosenreal, thus forcing the use of complex algebra. Consequetly, se\eral
approximativ e approadeshave beeninvestigated. Theseapproadesare usually basedon
a transformation of the Dirac operator to a truncated two-componert form and a sub-
sequen separation of spin-free and spin-dependert terms [14]. The spin-free terms (e.g.
the spin free no pair Douglas-Kroll operator [15]) are straightforwardly incorporated in
convertional methods and codes, whereasspin-dependert terms may be added at a latter
stagein the calculations, as in spin-orbit CI[16] Another possibility is to usethe Dirac-
Coulomb Hamiltonian or quasi-relativistic operators to generaterelativistic e ectiv e core
potentials(RECP) [17, 18, 19, 20Q].

During the past 15 years sewral 4-componert molecular Dirac-Fock codes have been
dewveloped[2], 22, 13, 23, 24, 25]. The rst basis set calculations were a wed due to the
disregard of the coupling betweenthe large and small componerts which must be re ected
in any basis set expansion[26, 27]. Also, there has been considerableconfusion over the
variational foundation of the method[11, 28]. The Dirac-Coulomb Hamiltonian generates
both positron and electron solutions, sothat the electronic ground state is an excited state
in its spectrum. Thereforethe minimalization of the corresponding non-relativistic method
must be replaced by a minimax principle. Convergenceis straightforwardly obtained by
vector selection, but may be more rigorously procured by secondorder methods.

The one-particle basis generatedby the Dirac-Fock method may be employed in cor-
related methods to obtain more accurate results. Implementations of the secondorder
M ller-Plesset(MP2) [29, 3(], the multi-reference Con guration Interaction (CI) [22, 3]]
and coupled-cluster singlesand doubles (CCSD) [32] methods have beenreported. Also,
work is in progresson the developmen of a 4-component molecular Multi-Con gurational
Self-Consistet Field (MCSCF) code[33, aspresented in this thesis. Relativity hasfurther-
more beenapproadied by meansof density functional theory [34]. Sincerelativistic e ects
are predominartly found in systemscortaining heavy elemers with alarge number of elec-
trons in the valenceregion, the e ects of dynamic correlation may be pronounced. Static
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correlation re ects the needfor a multicon gurational wave function in near-degeneracy
situations, sud asbond-breaking. In relativistic systemssud a situation becomespartic-
ularly critical due to the additional near degeneracieprovided by the spin-orbit coupling
[16]. In fact, the breaking of spin symmetry by the spin-orbit coupling generally makesa
multicon gurational approad mandatory for systemswith more than one open shell [33].

The motivation for the dewvelopmert of molecular 4-componert methods is manifold.
The study of relativistic e ects hasalready beenmentioned. The prime motivation, how-
ever, is to obtain computational tools that allow an adequatedescription of chemical sys-
tems in which suc e ects are important. In addition, 4-componert calculations sere as
bencdmarks for the quasirelativistic methods and probetheir rangeof validity. In addition,
the 4-componert methods are particularly well suited for studies of electric and magnetic
properties of molecules,due to the simple structure of operators. As an example one may
considernuclear spin-spin coupling, where four operatorsin the non-relativistic formalism
(Fermi contact, spin-dipole, paramagnetic spin-orbit and diamagnetic spin-orbit) are re-
placed by one operator in the 4-componert formalism [35]. At presen, the computational
intensity of the 4-componert methods to someextent limits feasibleapplications. On the
other hand, this haslead to intensive work on the computational methods, work which in
the end may bene t non-relativistic methods as well.

0.2 Layout of the thesis
The thesis preserted here focuseson the methodological aspects of relativistic molecular
calculations. In particular, it presers the formalism for

the quaternion Dirac-Fock equations
the direct 4-componert Dirac-Fock method

the multi-con gurational self-consisteh eld (MCSCF) method
Applications are represerted by
4-componert con guration interaction (Cl) studies of the v e lower states of PtH

4-componernt direct SCF studies of bonding in hydrides of iodine, astatine and eka-
astatine (elemen 117)

4-componernt direct SCF studiesof bonding in dihydrides of tellurium, polonium and
eka-polonium (elemert 116)

Methodological developmert dependson a clear understanding of both the mathematical
structure and the physical content of the theory to be implemented. This has been a
decisive factor in the layout of this thesis

The thesis consistsof three parts.
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1. In the rst part | give an extensive, but not comprehensie, introduction to the
eld of relativistic quantum medanics. | have tried to bring out the mathemati-
cal structure and physical implications of the Dirac equation and its approximativ e
many-electron extension, the Dirac-Coulomb Hamiltonian. The presenation is in-
terspersedwith someof my own researt material, wherel havefelt that it elucidates
the preseration. | have alsotried to avoid excessie overlap with the papers of the
secondpart, which meansthat the two parts should be read as a whole.

2. In the secondpart v e papers are preseried.
3. | have furthermore included seeral appendices:

documertation of the 4-componert direct SCF program DIRAC
details on the reduction of the Breit term to two-componert form
badground material on symmetry in relativistic systems
diagonalization of quaternion Hermitian matrices

tabulation and visualization of the angular part of atomic 2-spinors

Notation: | useatomic units throughout, but write electron massm and the speedof light
c out explicitly.
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Chapter 1

One-electron systems

There was a young lady named Bright
Whose speed was far faster than light
Sheseto one day

In a relative way

And returned home the previous night

A. H. R. BULLER [36]

The main objective of this chapter is to obtain a Lorentz invariant description of an electron
in a molecular eld, that is the eld of nuclei. We outline certral features of the theory
of special relativit y and considerthe transition from classicalto quantum medanics. We
presert the Dirac equation and discussits mathematical structure and physical cortent.
The two quartities are inextricably connected:

1. The transition from classicalto quantum medanics usually proceedsby way of
analogy Spin has no classicalanalogue, but appears explicitly in the Dirac equa-
tion. The spin is coupled to the spatial degreesof freedom, and this has profound
consequencegor the symmetry properties of solutions to the Dirac equation. The
solutions are fermion functions and changesign under a rotation 2 . This feature is
usually accourted for by the introduction of double groups. The behaviour of inver-
sion in double group theory is deducedon the basis of classicalanalogies. We shall
demonstrate that by deriving an explicit represenation of inversion in spin space,
we arrive at a contradictory result.

2. The coupling of spin and spatial degreesof freedom meansthat the spin symmetry
of non-relativistic theory is lost. In the absenceof external magnetic elds, however,
the spin symmetry can to someextent be replacedby time reversal symmetry. We
demonstrate that time reversal symmetry yields a quaternion formulation of the
Dirac equation.



Ch.1 One-electron systems

3. The charge conjugation symmetry of the free particle Dirac equation reveals its
many-body aspect in that it describes both the electron and its antiparticle, the
positron. A proper decription of an electronin an external eld canonly be obtained
within the framework of quantum electrodynamics (QED).

Further information of the physical cortents of the Dirac equation is obtained by
considering perturbation expansionsin terms of the ne structure constart . This is
also the way to quasirelativistic one- and two-componert Hamiltonians. We discussthe
di culties involved in their derivation, namely the risk of introducing unbounded and/or
highly singular operators.



1.1 Special relativit y

1.1 Special relativit y

You are rowing a boat upstream. The river ows at three miles per hour;
your speed against the currents is four and one-quarter. You lose your
hat on the water. Forty- ve minutes later you realize it is missing and
execute the instantaneous, acceleration-fr ee about-face that such puzzles
depend on. How long does it take to row back to your owing hat?*

JAMES GLEICK (1992) [37]

The theory of specialrelativit y is "special" becausdt only considersthe transformation of
space-and time coordinates betweeninertial frames,that is coordinate systemsin uniform
relative motion. The principle of relativity, however, predatesthe theory set forward in
1905[38] by Alb ert Einstein, technical expert third classat the patent o ce in Bern, and
states that [39]

The laws of physicstake the sameform in all inertial frames.

Implicit in this postulate is the assumption of homogeneiy of spaceand time and isotropy
of space. Considerations of the structure of time and spaceform a powerful tool for the
elucidation of the laws of physicsand their mathematical formulation , asis demonstrated
in section 1.2 and 1.4. The principle of relativity was originally connectedto the notion
of absolute time asenbodied in the Galilean transformation

rO = r vt

(1.1)
0 = t

relating coordinates of inertial framesKand K, having the sameorientation of axes,and
where K% moves with uniform velocity v relative to K. In the theory of special relativit y
the idea of absolute time is replacedby the postulate [39]:

In any giveninertial frame, the velocity of light c is the samewhether the light
be emitted by a body at rest or by a body in uniform motion.

This postulate leadsdirectly to the Lorentz transformation, asfollows: The speedof light,
as measuredin inertial framesK and K© shall have the samevalue

g rdi_ o irz raj_

; c 1.2
g 1] tp 1t (1.2)

1A simpler problem than most. Given a few minutes, the algebra is routine. But a student whose
head starts lling with 3sand 4%5, adding them or subtracting them, has already lost. This is a problem
about referenceframes. The river's motion is irrelevant | asirrelevant asthe earth's motion through the
solar system or the solar system's motion through the galaxy. In fact all the velocities are just so much
foliage. Ignore them, place your point of referenceat the oating hat | think of yourself oating like the
hat, the water motionless about you, the banks an irrelevant blur | now watch the boat, and you seeat
oncel...] that it will return in the sameforty- v e minutes it spent rowing away." [37]
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By simple rearrangemen we nd that the quadratic form
s2,= (r, ry)? A= 13 9% A% (1.3)

is identically zero in both coordinate systems. From the assumption of homogeneiy of
time and spaceand isotropy of space,one can deduce[40Q] that the interval s> between
any two setsof spaceand time coordinates (events) is consened under the transformation
betweeninertial frames. To simplify things a bit, we shall let frames K and K © coincide
at time t; = t9 = O sothat r? = r; = 0. The interval Eq.(1.3) may then be thought of as
the length of a four-dimensional vector r  which shall be denoted 4-position

r = (ry;ra;ra;ra) = (r;ict) (1.4)

The Lorentz transformation presenes the length of 4-position and is a rotation in 4-
dimensional space-time where the timelik e coordinate is given by r4 = ict. 2 To derive the
explicit form of the Lorentz transformation we rst considerthe transformation between
K%and K wherev is directed along the z-axis of both systems,sothat x- and y-coordinates
can be neglected. Since length of 4-position is consened the coordinates (z%ict9 of K°
and (z;ict) of K are related by an orthogonal transformation, which hasthe generalform

0 .
z7 cos sin z
ict® sin  cos ict (1.5)
Alternativ ely, we can write out the two equations
0 — . .
z’ = z + ict sin
cos cts (a) (12.6)
ict® = zsin + ict cos (b)

SinceK%and K coincidedat t; = t? = 0 the origin of K% z°= 0, has coordinate z = vt at
time t in K. Insertion in Eq.(1.6a) immediately gives

1
iv \Y; . v
tan = — cos = 1 — = ;, Ssin = — 1.7
c ) c? c (2.7)

from which we obtain the transformation
0 iv
z L. z
= : c . (18)

ict? v ict

2The Lorentz transformation is only a rotation when translations are excluded from the space-time
transformations. With translations included the Lorentz transformation is denoted inhomogeneousand
only the distance between4-position vectors, asexpressedby the interval, is consened in the transformation
betweeninertial frames.
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In order to bring the transformation on the sameform as Eqg.(1.1) we rst write

P=r+[( 1z vt]%; 0= ¢ % (1.9)
and then usethe relation v r = vz [41] to obtain
= r+v ( 1Yt
(1.10)
t0 =t Y

Note that in the limit ofc! 1 (the non-relativistic limit) we recover the Galilean trans-
formation. The Lorentz (and Galilei) transformation was derived with the restriction that
the orientation of spatial axeswere identical in K and K®, which meansthat the trans-
formation Eq.(1.10) doesnot describe all possiblerotations in space-time. For instance, a
rotation about the time-like axis correspondsto a rotation in ordinary three dimensional
space.

The set of 4 4 rotation matrices in space-timeforms a cortinuous group, the (ho-
mogeneous)Lorentz group. Four-dimensional vectors, such as 4-position, whoselength is
presened under Lorentz transformations, are denoted 4-vectors. Another 4-vector that
we shall make use of is the 4-gradient

I @
@= r; ca (1.11)
The 4-vectors form a corveniernt and compact formalism for the construction of Lorentz
invariant medanics in analogy with the Newtonian (Galilean invariant) mecanics. We
shall do so, in a somewhat heuristic manner, where our ultimate goal is to derive an
expressionfor the energy of an electron in an external eld (e.g. the eld of nuclei),
which will then be the starting point for the transition to relativistic quantum medanics.
A basic prerequisite for such a derivation is a Lorentz-invariant time-like quantity. We

de ne proper time by

W o eger,e ) 1

S

d=2=q41 - 8 T 5 g1 L= i (1.12)
C C C

The coordinatesr may be thought of asthe coordinates of a particle moving with velocity
v. In the rest frame of the particle we have v = 0 sothat d = dt. Proper time is thus
seento be the time in the rest frame of the particle.

3This particular kind of Lorentz transformations is denoted a boost.
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Di eren tation of 4-position with respect to proper time gives 4-velaity

= ZL = (v;ic) (1.13)
Note that the presenceof in the space-partof 4-velocity limits all speedsto valuesequal
to or below the speedof light. This hasthe important consequencehat there can be no
instantaneous interactions. Clearly then, the standard Coulomb potential is not Lorentz-
invariant and must be replacedby a potential that take retardation of the interaction into
accourt.

We proceedby de ning 4-momentum as

p =mv =(p;iMc); p=Mv;, M= m (1.14)

The latter relation indicates that the massM of a particle increaseswith the speed* The
timelike componert of p can be assciated with energy To demonstrate this, we rst
de ne 4-force by di erentation of 4-momertum with respectto proper time

_dp _ .. dM
F =4 = Ficg (1.15)

Sincep is a 4-vector its length must be Lorentz invariant. We nd
(p)>=M?2Vv? & = (mc)? (1.16)
Di eren tation of Eq.(1.16) with respect to proper time givesthe important relation

2
d((';’):zp(;i:o ) Fp=0 (1.17)

showing that 4-momertum and 4-force are orthogonal 4-vectors. A simple rearrangemen
gives

dM ¢? F dr _ dE
=F u-= =

dt dt dt

(1.18)

where we have used the classical de nition of work and energy in the nal step. This
relation shaws that the time derivative of the quantity M c? is assaiated with the time
derivative of energy We perform a bold generalization:

dMc®)=dE ) E=Mc (1.19)

4Alternativ e views are expounded in [42, 43].
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The above relation shaws that an in nitesimal increasein the kinetic energy of a particle
gives a proportional increasein the mass of the particle, so that massand energy are
equivalent. We can now write the 4-momertum of a free particle as
iE
= p;— (2.20)

’

c
By insertion into Eq.(1.16) we nally obtain
E? = m2c*+ Zp? (1.21)

This is the relativistic expressionfor the energy of a free particle.
We seek,however, the description of an electronin a molecular eld. External electro-
magnetic elds are introduced by meansof the substitution [40]

p ! =p OGA; A = A (1.22)

i
e
where we have introducedthe 4-potential A and the charge q of the particle. The vector
and scalar potentials A and are related to the electric and magnetic elds E and B by

@\
E=r —_— B=r A 1.23
@ (1.23)
There exists a many-to-one corresppndencebetweenelectromagneticpotentials and elds,
in that the electric and magnetic elds are invariant under the gaugetransformation

Al A @f (1.24)

where f is any scalar function of spaceand time coordinates. For consistencywe must
therefore require that the laws of physicsare invariant under gaugetransformations. This
is ensuredby the substiution Eq.(1.22).

The fact that the 4-potential transform as the 4-position has some very important
consequencesConsider a intertial frame K in which there is a scalar potential (r), but
no vector potential and thus no magnetic eld. By transforming to an inertial frame K°
moving with uniform velocity v relative to K, we nd a nonzerovector potential

A% (v (1.25)

Note that the vector potential in K°is expressedin terms of a function of coordinates of
K. By transformation of the coordinates to those of K° retardation terms appear in the
vector potential. We shall not considertheseexplicitly. For v ¢, the resulting magnetic
eld in K%is approximated by

E v

0_
B"= 2

(1.26)
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This meansthat a particle moving in an electric eld experiencesa magnetic eld in its
own rest frame. This is the origin of the spin-orbit e ect [44].
If we perform the substitution Eq.(1.22) and take the squareroot on both sidesin the

resulting equation, we nally arrive at a Lorentz invariant energy expressionfor a particle
in an external eld

P
E = m2ct+ ¢2 2+ (1.27)

We seethat we have a choice of whether to take the positive or negative root. In classical
medanics, the positive root is chosen,and the negative energy solutions discarded since
discortinous changesare not allowed. In order to arrive at the non-relativistic limit, we

readjust our energy scaleby subtracting the rest massterm mc? and expand the square
root in ( =mc)?

2 4
E°=E mc2 = q +mc? 1+ +:0 mc?
2m2¢2  8m4ct
, A (1.28)
= — +q +
om 4 © 3¢2

The rst two terms constitute the non-relativistic energy expressionfor a particle in an
exteral eld. We shall seein section 1.8, howewer, that the expansionof the sqaureroot

in Eq.(1.27) in order to obtain approximations to the relativistic energy is beset with
di culties.
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1.2 Spin

A colleaguewho met me strolling rather aimlessly in the beautiful streets
of Copenhagen[1922] said to me in a friendly manner,"Y ou look very
unhappy"; whereupon | answered er cely,"How can one look happywhen
he is thinking about the anomalous Zeeman e e ct?"

WOLF GANG PAULI (1945) [45]

In the previous section we derived the Lorentz invariant energy expressionfor a parti-
cle in an external eld in terms of classicalmedanics. We now consider the transition
from classicalto quantum medanics. The transition usually proceedsby way of analogy
The intrinsic angular momertum of the electron (spin) was, howewer, intro duced with no
classicalanaloguein the early days of quantum medanics and therefore desenes special
consideration.

We rst briey recall the formalism of quantum mecanics. In the Hilb ert-spacefor-
malism the states of a systemare represerted by unit vectors in anin nite dimensional
function space,the Hilb ert space.A salar product is de ned by

z

hij ji= () j()d (1.29)

where are coordinates and d the assaiated volume elemen. The state vectors are
normalized to unity

hji=1 (1.30)

Obsenables of the system are represened by Hermitian operators in the Hilbert space.

The function spaceis completein the sensethat any state vector can be expandedin the
eigervectors  of any operator " corresponding to someobsenable:

i =i ) = G i; G=hji (1.31)

The squareof the expansioncoe cien ts ¢; givesthe probability of the corresponding value
I'; of the obsenable. The expectation value of the obsenable is
DE D E X
- " = 1d (1.32)
i
Another quartity related to experimert is the transition probability
D E,

AN

j i (1.33)
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which givesthe probability of transition from the state ; to another state ; under the
in uence of an interaction represetted by ". The normalization of state vectors leavesan
arbitrary unimodular complex phaseundetermined. The state vectors are therefore more
properly consideredas unit rays in the Hilbert space. The absolute phase of the wave
function can not be obsened experimentally since the phasesenter neither probabilites
nor expectation values. Relative phasescan, however, be obsened by interferometry (see
e.g. [46, 47, 48)) °.

Operators are traditionally derived by correpondencewith classicalmedanics, e.g. the
free-particle Schrodinger equation is obtained from the corresponding classicalexpression

_ P _.@ - 1.
E=_— ) BHo=i g = ot (1.34)
by the operator substitution
E = icpsg! |@; p! ir (1.35)

A quantity with no classicalanalogueis the electron spin, whose existencewas rst
postulated in 1925by Goudsmit and Uhlenbed [50]. Spin appearedfor the rst time in a
wave equation,without having beeninserted by hand, in the equation Dirac obtained by
linearizing the operator analogue of the relativistic energy expressionfor a free particle
Eq.(1.21), and wastherefore takento be arelativistic e ect. Howewer, ashe stated himself,
Dirac was "just playing with equations” [51] and seeingwhat they gave. In particular he
tried to explore the relation

( p( p)=p (1.36)
where are the Pauli spin matrices [52]

1 0 i 1 0
0 sy = : 0 oz = (137)

X =

0
1
Eq.(1.36) is derived from the more generalrelation

( P Q=P Q+i (P Q) (1.38)

This is an important relation apearingin many di erent contexts. It hasthe nice property
that it extracts a spin-independert termf from a spin-dependert operator expression.

5The phaseindeterminacy is closely related to the gauge(phase)invariance Eq.(1.24) introduced in the
previous section. A phase can be global or local. In the latter caseit is a function of spaceand time
coordinates. The physical properties of a free particle is invariant to any global phase change in its wave
function. If we require local gauge(phase)invariance, external elds must be intro duced [49]
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We may play the same"game” in the non-relativistic domain. We then immediately
seethat spin is hidden in the kinetic energyoperator. We may introduce an external eld
by the substitution

p! =p+eA; E! E+e (1.39)
Using EQ.(1.38) and the relation
= ir A= iB (1.40)

where and A arethe scalarand vector potentials respectively, we seethat an extra term
appearsin the non-relativistic Hamiltonian

2
H=__ e+ %( B 1.41
o om ( B) (1.41)
The term is identi ed asthe spin-Zeemanterm and represerts the interaction of spin and
an external magnetic eld B, from which the anomalousZeemane ect arise.
Continuing the "game", it is even possibleto derive a four-componert non-relativistic
equation for spin—% particles, as done by Levy-Leblond [53]

E ( p) 1
(o om ' =0 (1.42)

By elimination of the componert » werecover Eq.(1.34). What is particularly interesting
about Eq.(1.42)is that it is not derived from correspondenceprinciples, but from exploring
projective (ray) represetations of the non-relativistic analogueof the Lorentz group, the
Galilei group. This demonstratesthat spin arises naturally in the study of space-time
symmetriesin both the non-relativistic and relativistic domains. A lucid discussionof this
point is given in [54, 55]. We return to the Levy-Leblond equation in section 1.8.
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1.3 The Dirac equation

N.Bohr: { What are you working on?
P.A.M.Dir ac: { I'm trying to get a relativistic theory
of the electron.
N.Bohr: { But Klein has already solved that problem.

Solvay Conference  (1927) [56]

Let us now turn to the derivation of the relativistic wave equation for the electron. It will
turn out that it is not possibleto construct such an equation for the electron alone. Rather
we obtainan equation that describesboth the electron and its antiparticle, the positron.

Straightforward operator substitution Eq.(1.35) in the relativistic free-particle expres-
sion Eq.(1.21) leadsto the Klein-Gordon equation

1@, .

2 @2
The energy operator appears squared in this equation. Henceit has solutions of both
positive and negative energies.Contrary to the classicalcase the negative energysolutions
cannot be discardedsinceour functional spacewould then becomeincomplete. There will
always bea nite probability of transitions betweenstatesof negative and positive energies.
Another problem is that the negative energy solutions have negative probability densities.
Thesedi culties led to the rejection of the Klein-Gordon equation®. Instead, Dirac tried
to linearize the energy expressionEq.(1.21) by exploiting Eq.(1.36). "It took me quite a
while ... beforel suddenlyrealizedthat there wasno needto stick to quarntities ...with
just two rows and colums. Why not goto four rows and columns?" [56]. This lead to the
introduction of the Dirac and matrices

0 ) _ 120 . )
= 0o = 0 I

= (mo)? (1.43)

=0, g=xv;z (1.44)

and the Dirac equation [58, 59].
We shall derive the Dirac equation following an approad intro duced by van Waerden
[60]. We expand the scalar wave function Eq.(1.43) using Pauli matrices

1é , _ i@ i @ 2
2@ tp - @ ( p) c@ + p) = (mc) (1.45)
where is a two-componert wave function. To obtain a rst-order equation we introduce
1 i@
= — ——+ ; = 14
1% e @ «( p 2 (1.46)

5The Klein-Gordon equation was revived in 1934 as the relativistic wave equation for spinlesscharged
particles [57].
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The second-orderequation then becomesequivalent to two rst-order equations

Ieg ( p) 1 = mco (a
i @ (1.47)
c@ +( p) 2 = mc, (b)

To relate this to the Dirac equation for the free electron we take sumsand di erences

i‘;g[ﬁ 2l ( Pl 2] me[ 1+ 2]  (a+h

(1.48)
( P+ 2 ~20% o= me[1 2 b a
P)L 1 2 Calt 2l = 1 2
and intro duce the notation
b= g+ o %=1 (1.49)
We then obtain
2 i@ 32 3 2 3
ca@ ( p) L L
; T i4 s-mea s (1.50)
(w200 :
p c@
The 4-componert can be completely in terms of 4-vectors and scalar quartities as
n L #
i @ mc) =0 =( i)y = (1.51)

and is therefore manifestly Lorentz invariant Dirac. The Dirac equationin its more familiar
form is straightforwardly obtained by multiplication with ¢ from the left

@ 2

i— ¢( p) = mc (1.52)

External elds are introduced by means of the substitutions in Eq.(1.22). The Dirac
equation then attains the form

D = fip ig =0, hp= mc?+c( ) e (1.53)
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or, in full,
2 3
mc2 e i@@ 0 ecA, icd, ecA icd 2 . 3
0 mc? e i@@ ecA, icd, ecA, + icd, L
=0
ecA, icd, ecA icd mc2 e i @@ 0 S
ecA, icd, ecA, icd, 0 mc2 e ig S
(1.54)
where we have introduced the notation
@ @ .@
d, = —; d = — i—: 1.55

The relativistic wave equation is seento have four componerts. The extra degreesof
freedomresults from the intro duction of spin and the fact that the equation describesboth
the electron and its antiparticle, the positron. The uppertwo componerts are dominant in
electronic solutions and are therefore denoted the large (L) componerts, whereasthe two
lower componerts are denoted the small componerts. The large and small componerts

both have a spin-up ( ) and a spin-down ( ) part.

In the next three sectionswe will

explore the physical corntent of the Dirac equation from its symmetry properties.
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1.4 Spatial symmetry

One day, while we were walking on the beach, he [Dir ac] told me that
he would teach me a saying:'lt is easy, if you rememler the symmetry.
Watch the symmetry." He went on, 'When a man says yes, he means
perhaps; when he says perhaps, he means no; when he says no, he is
no diplomat. When a lady says no, she means perhaps; when she says
perhaps, she means yes; when she says yes, she is no lady'. With a
couple of repetitions, | learned it, and he was pleased.

S.A. KURSUNOGLU (1987) [61]

A symmetry operation G is de ned asan operation that commutes with the Hamiltonian
of the system:

h i
GH =0 (1.56)

Symmetry operations are either unitary or antiunitary , asshown by the following argument
by Wigner [62]: Obsenables calculated from a given wave function are invariant under
any symmetry operation on the wave function. For the transition probability Eq.(1.33)
we must therefore have
D E,
G ijG j =jhij ji®=hij jihj i (1.57)

where the interaction operator * has been set equal to one for simplicity (to obtain a
totally symmetric operator). The above relation can be realized by

D E

G ii6; = hij ji;) Gisunitary

D E (1.58)
G ii6 = hjj ii;) Gisanti-unitary

Let us rst considerunitary symmetry operations and defer the discussionof antiunitary

operators until the next section. A more thorough discussionwill befound in Appendix C.
Herewe will exploit a simple, but powerful obsenation: In the absenceof any external eld

the Dirac Hamiltonian Eq.(1.53) must beinvariant under all possiblesymmetry operations
(unitary or antiunitary) of time and space. This follows from the homogeneiy of space
and time and from the isotropy of space. The latter implies rotational invariance and
the consenation of total angular momertum. The Dirac Hamiltonian doesnot, however,
comnmute with the orbital angular mometum operator |, which meansthat someangular
momertum is "missing”. By inspection, we nd that the Dirac Hamiltonian commutes
with a total angular momertum j = | + s, which demonstratesthat the Dirac equation
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describes particles of spin s = % The spin-operator s is represerted by % where is
the 4 4 analoguesof the Pauli spin matrices

0 0o | ; = 0
=02 )= ; A Lk (1.59)
[ 1 =0
The total angular momertum operator j is the generator of in nitesimal rotations. A
nite rotation about an axis represened by the unit vector n is given by

R(;n=e! M=l (MDe ") =R (;n)R (;n) [;s]=0  (1.60)

Note from the above relation that the rotation operator splits into one part acting on
spatial coordinates and one part acting on spin coordinates. The rotation operator for the
spin part is straightforwardly establishedas (seeAppendix C)

R (;n)= cos% i( n) sin% (1.61)

In particular binary rotations about main axesare given by
Ci= i x; C= i y Ci= i , (1.62)

We note that CJCJ = 14 for all coordinates g which demonstratesthat fermion functions
change sign upon a rotation 2 , in contrast to bosonfunctions for which a rotation 2 is
equivalent to the identit y operation. The fermion phaseshift hasbeenveri ed experimen-
tally in neutron [63, 64, 65] and NMR [66] interferometry.

Represetations in spin spaceof other symmetry operations can be derived using the
fact that the operator ( p) must beinvariant under all symmetry operations. Hencethe
Dirac -matrices must transform asthe momertum operator p, that is, asthe Cartesian
coordinates, sothat we have

G G 1=GpG 1t (1.63)

where G, and & act on spatial and spin coordinates, respectively. Rotations in spin
spaceand ordinary spaceare connectedthrough Eq.(1.63), which establishesa mapping
between the group of SU(2) of special unitary matrices (acting on 2-spinors) and the
group SO(3) of special orthogonal matrices (acting on Cartesian coordinates). Howewer,
the mapping is a two-to-onehomomorphismsincearotation 2 is equivalert to the identit y
operation in ordinary space,whereasit leadsto a phaseshift in spin space. Note that the
above relations leave a complex phaseundetermined for G , in accordancewith the phase
indeterminacy of the wave function.
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Under spaceinversion the momertum operator changessign, so that the spin part of
the spaceinversion operator is determined by

toTt= (1.64)

The above relation implies that the inversion operator 1 anticommutes with the Dirac
-matrices. An obvious choice for the inversion operator is therefore the Dirac -matrix.
We de ne
T = (1.65)
The fact that the Dirac -matrix appearsin the spin part of the inversionoperator demon-
stratesthat the large - andsmall S componerts have opposite parity” Finally we derive
expressionsfor the operations of re ection in the spin coordinates using the fact that re-
ections are the product of inversion and binary rotations :

Nyz = xi Dx = yi Mxy = z (1.66)
We arrive at the sameforms (within a phasefactor) using Eq.(1.63), for example

Nz (xi oyl z)Ayzlz( X ys o z) ) Nyz = X (1.67)

Two-componernt analoguesof the symmetry operations derived sofar are obtained by the
substitutions

oo Lo, (1.68)

A problematic aspect of the represetations derived so far is that they are at odds
with the convertions of double group theory. Double groupswereintroducedasan arti ce
by Bethe [69] to avoid two-valued represenations of fermion functions, which are not
true represetations of the symmetry group, and thereby recover the whole madinery of
group theory. He introduced an extra elemen E, corresponding to a rotation 2 about
an arbitrary axis. This leadsto a doubling of the number of symmetry operations of the
group, but generallynot to a doubling of the number of irreducible represenations (irreps).
The extra irreps that appear in the double groups are spannedby fermion functions and
are consequetly denoted fermion irreps, whereasthe irreps of the corresponding single
groups are bosonirreps.

"Note from Eq.(1.49) that the functions ; and » are not eigenfunctions of parity. Rather, the parity
operator takes i into , and vice versa. The Egs.(1.47) decouple for rest massm = 0. Eq.(1.47b) was
therefore proposed as the wave equation for a masslessspin-% particle in 1929 by Weyl [67], but was
rejected sincethe wave function 1 is not invariant under parity. Parity is, however, not consened in weak
interactions. With the demonstration in 1957 of the violation of parity consenation in the -decay of the
80Co - nucleus [68], the Weyl equation was revived as a two-component equation for the neutrino.
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The introduction of E doubles the order of all rotations. On the other hand, the
order of inversionis still takento betwo (12 = E), sincespaceinversioncommutes with all
rotations in ordinary space.In our represenation, Eq.(1.65), however, inversionis of order
four. Sincethere is an inherent phaseindeterminacy, we could correct this by changing
the phaseof our inversion operator. However, we can show that operation of inversion
must be of order four if we want consistencyin the represertation of spatial symmetry
operations.

It is well known that two spins s = % couple to a singlet function and the three
componerts of a triplet function. The latter three functions transform as the spherical
harmonicsY|n, with | = 1. By forming the direct product ofa2 2 matrix represenation of
a symmetry operation (in the two-componert case)with itself, we obtain a link to matrix
represenations of the spherical harmonics with | = 1. The direct product givesa4 4
matrix from which we by a unitary transformation canisolate a3 3 block represering
the corresponding symmetry operation in the basisof spherical harmonicsfor | = 1. The
phasesfor the symmetry operations preseried above have been chosenwith care so as
to obtain agreemen with the Condon-Shortley phasecornvention for spherical harmonics
[70]. In the caseof inversion, the caseis, howewer, unambiguous: The direct product of
the two-componert represenation of inversion with itself gives

il,  ilo= g4 (1.69)

The identity matrix is invariant under all unitary transformations, and sowe obtain |3
as the represernation of inversion in the basis of fY1.1:; Y1.0; Y1. 10, as we should. It is
not possibleto obtain the samerepresenation starting from a two-componert inversion
operator of order only two. Altmann [71], in the languageof projective represenations,
seesthis discrepancybetweenrepresenations merely as a choice of gauge(phase). In my
opinion his explanation seemssomewhatad hoc. There is a fundamental weaknessin the
derivation of the behaviour of inversionin double group theory. The extra elemert E is
introducedto accourt for the fact that fermion functions have a behaviour under rotation
that is di erent from rotations in ordinary space. Yet the behaviour of inversionin double
group theory is deducedwith explicit referenceto inversion in ordinary space,which is
somewhatinconsistert. It would be interesting to seewhether the behaviour of fermion
functions under the operations of inversion or re ections can be resolved experimertally.
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1.5 Time reversal symmetry and quaternion algebra

The invention of the calculus of quaternions is a step towards the knowl-
edge of quantities related to space which can only be compared for its
importance, with the invention of triple coordinates by Desartes. The
ideas of this calculus, as distinguished from its operations and symkols,
are tte d to be of the greatest usein all parts of science.

J.C.MAXWELL (1869)

Quaternions came from Hamilton after his really good work had been
done; and, though beautiful ingenious, have been an unmixed evil to
those who have touched them in any way, including Clerk Maxwell.

LORD KELVIN (1892) [72]

We now turn our attention to antiunitary operators. From the previous section we recall
that an antiunitary operator K is de ned by

D E
R 1jR 2 =haj si=hyj 2i =Rhqj i (1.70)

The last two terms indicate the antilinearit y of antiunitary operators:
IQ(a1+b2)=aIQ 1+b|22 (2.71)

It is straightforwardly shawvn that the product of two antiunitary operators is a unitary
operator, which implies that any antiunitary operator can be written as a product of
a unitary operator and some antiunitary operator. The simplest choice of an operator
to fullll conditions Eq.(1.70) and Eq.(1.71) is the complex conjugation operator Ko. A
generalantiunitary operator may therefore be written as

R = UK, (1.72)

In non-relativistic systemsK, commutes with the Hamiltonian in the absenceof external
magnetic elds and represens the operation of time reversal[73]. This is straightforwardly
seenby letting K, operate on both sidesof the time-dependert Schredinger equation

Roig (1) = RolH (ri0)]
* h o i
igko (r;t):i@—@t)ko (r;t) = HRg (r;t) H;Rg =0 (1.73)
+
| @ Ro (r; 1) = H Ro (r; t)

@)
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We considernext the form of the time reversal operator K in the 4-componert formalism.
Momenta are reversedunder the operation of time reversal

RKpR 1= p (1.74)

Using the generalform Eq.(1.72) of an antiunitary operator and Eq.(1.63) we therefore
nd that

R R1=uU U= ) U( i yi 22U r=(x v 2) (1.75)

Sincethe Dirac  matrices transform asthe coordinates, we identify U asa rotation about
the y-axis Eq.(1.62) and write the time reversal operator as

R= i yKo= i(l2 y)Ko (1.76)

Sincewe are mainly interested in fermion functions, we can alternatively de ne the time
reversal operator by its action on a fermion function , that is

Ra =ak ; R2 = (1.77)

We shall usethe corvertion

R = (1.78)

and denote and as Kramers partners. We shall now use the alternative de nition
Eq.(1.77) to derive the general matrix structure of Hermitian operators * that are
symmetric(+) or antisymmetric( ) under time reversal [33, 74]

RYWR 1=t t= 1 (1.79)

We considerthe matrix represettation of "¢ in a Kramers restricted basis which we de ne
as follows: Operate with K on a set of fermion basis functions f pd to generatea com-
plemertary basis |, . The Kramers restricted basisis then union of the two sets. We

establish the following relations betweenmatrix elemerts of i

1
—

{] DIQ_ R R 1 IQ_E
mo= A b Pe (1.80)
R RIR,

calk -

1

1

1
—

Pq

From theserelations we nd that the matrix represernation of * hasthe structure

A B . AY A; Apg = P

T tB tA BT = B; By - (1.81)
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Let us investigate the properties of the above matrix structure. Since is Hermitian,
its matrix may be diagonalizedby a unitary transformation, giving real eigervalues” :

A B c . C

tB tA c c (1.82)
We write out the corresponding matrix equations
Ac + Bc = "c
tBc + tAc = "c ; (1.83)

conjugate both equationsand then multiply the rst with t and the secondwith t. This
gives

tA ¢ + tB c t"c

Bc Ac = t'c (1.84)
which can be expressedon matrix form as
A B c — c

tB  tA c ! c (1.85)

Hencewe can concludethe following about the matrix of * in a Kramers restricted basis

If * is symmetric with respectto time reversal, its matrix is doubly degeneratewith
eigervectors related by time reversal symmetry

c . c
A (1.86)

To someextent time reversal symmetry recovers the spin symmetry lost in the rel-
ativistic domain, but the recovery is only partial. In the non-relativistic domain a
totally symmetric (spinfree) operator doesnot couple two spin orbitals if they have
opposite spin. In the relativistic domain we have the wealer relation

D _E
i "+, 0 onlyifi=] (1.87)

If * is antisymmetric with respectto time reversal, then eigervectors are pairwise re-
lated by time reversalsymmetry Eq.(1.86) that have eigervaluesof the sameabsolute
value, but with opposite signs.
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Let us now investigatetime reversalsymmetry in the Dirac equation. It turns out that
this is best done by a reordering of the 4-spinors:

2, 3 2 | 3
L S
L
s = | = (188)
S L
S S

From the matrix structures derived above we can immediately split the Dirac equation
Eq.(1.53) into one part that is symmetric and another part that is antisymmetric under
the operation of time reversal

h i
D = D*+D =0 (1.89)
The symmetric part is
Zme2 e icd;, 0 cd O
icd, mc? e icd 0
D+ = (1.90)
0 icd, mc? e icd,
icd, 0 icd, mc? e
and the antisymmetric part is
3
i@@ echA, 0 ecA
ech, i@@ ecA 0
5 = (1.91)
0 ecA i@@ echA,
ecA, 0 ecA, i@@

We can now explicitly show that the pair of eigervectorsin Eq.(1.86) are related by
time reversal symmetry. With reorderedspinors (Eq.1.88) the time reversal operator has
the form

R= i[y I12Ko (1.92)
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Operating with K on an eigervector ¢ we obtain

0 I c c
Ke = , éko c T . (1.93)

1
ol

asrequired.

By restricting the Dirac operator to the time symmetric part B* only, a considerable
simpli cation is possibleby the introduction of quaternion algebra. A (real) quaternion
number® is written as

X
q= ce =¢cy+c +c +c3ki ¢ 2R (1.94)
=0

in which the quaternion units , , and k obey the following multiplication rules
2- 2_ k2: k= 1 (195)

The quaternion units are equivalert in the sensethat they may be interchangedby cyclic
permutation ! I' k! . Thus, in a complex number a + ib the imaginary i may
correspond to either , , or k without changing its algebraic properties.

When Pauli introduced the spin matrices that bear his name, Jordan pointed out[76]
that the properties of imaginary i times the Pauli matrices were identical to that of the
quaternion units , and k. Speci cally we have the mapping

i 2% ; iy$ i x$ Kk (1.96)
which allow us to represert a quaternion number by a2 2 complex matrix

b a= Cp+icy;
a

; b= cy + ica: (2.97)

g=a+b$ Q=colo+tcCii ,+Ci y+C3i x= ab

so that

he $ Q1Q2 (1.98)

This is analogousto the complexnumbers,which may berepresened by 2 2 real matrices.
Two equivalent represenations exist

S a b

E ¢ = b a
c=a+ib$ E a;b;2 R (2.99)

0 _ a b

- CY = b a

8Note that quaternion numbers are not quaternionic, just as complex numbers are not complexionic.
The use of quaternion algebra in physicsis described in [45, 75].
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The quaternion analogueof C' would be

o_ab
Q= b a

(1.100)
However we nd that Q9QJ 6$ cqucp. Instead we have Q9Q9 $ . This demonstrates
a troublesome feature of quaternion numbers, namely that they do not commute under
multiplication °.

Quaternion algebra allows block diagonalization of the matrix of an operator that is
symmetric under time reversal. By comparing Eq.(1.81) and Eq.(1.97) we seethat the
matrix .+ hasa structure identical to that of the 2 2 complex matrix represenation Q
of quaternion numbers, which meansthat it can be expressedin terms of Pauli matrices
or quaternion units. Block diagonalization is achieved through the unitary quaternion
transformation
A+B 0

1
y = : =
ur .U 0 KA+B)k @ UJU=P3

- (1.101)

Due to the decoupling of blocks, the transformation leadsto an exact reduction of the
time reversal symmetric Dirac operator D* Eq.(1.90) to two-componert form, albeit in
terms of quaternion algebra (indicated by upper prescript Q):

Qe =EQ (1.102)
where
2
Qf — mcc e 0 0 d, 0 dy 0 dy
h 0 mc2 4,0 ¢ a4 0 %4 o
(1.103)

The quaternion eigenfunctions @ are related to the corresponding complex reordered
4-spinors Eq.(1.90) by
h [
Q - $ (1.104)

The quaternion Dirac operator hasan intriguing structure. The scalar potential enter the
real part, whereasthe kinetic energy part is spannedby the quaternion units , and k.
The equivalenceof quaternion units thus parallels the equivalenceof the coordinate axes

%A historical note: In the early days of quantum mechanics Dirac intro duced the concept of c-numbers
and g-numbers where "c stands for classical or maybe commuting” and "q stands for quantum or maybe
queer"[56]. Maybe they should stand for complex and quaternion?
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(x,y,2). Note that in the quaternion formulation the time reversal operator is mapped into
, for we have

h i
Q = $ =R (1.105)

Before concluding this section,two nal remarks should be made:

1. The full Dirac equation Eq.(1.54) may be expressedin terms of complex quater-
nions. Complex quaternions[77, 78] are obtained by replacing the real coe cien ts
in Eq.(1.94) by complex coe cien ts. The substitutions A = iA%and B = iB%in
Eq.(1.81) establishesthe relation = i 9. In the complex quaternion Dirac
equation the time symmetric D* and antisymmetric D parts erter the real and
imaginary parts of the coe cien ts, respectively. We shall not pursue this approadc
here and refer to the literature[79, 80, 81, 82, 83 for details.

2. For a unimodular number the matrix C EQ.(1.99) is identical to a2 2 orthogonal
matrix (seeEq.(1.5)), which represerts a two-dimensionalrotation. The quaternion
units , and k form the basis for general rotations in three-dimensional space, a
feature that is seenfrom Eq.(1.62). In fact the eight basic binary spatial symmetry
operations can be mapped into the complex quaternion units as shown in Tab.1.5.
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Table 1.1: Mapping betweenthe basiceight binary symmetry operations and the complex
guaternion units

Proper rotations Improp er rotations

E ! P 1t il ! i
: 2 : 2

y ! IV Nox | y b
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1.6 Charge conjugation

Sehr viel unglucklicher bin ich uber die Frage nach der relativistischen
Formulierung und wuber die Inkonsequenz der Dirac-Theori ... Also ich
nd' die gegenwartige Lage ganz absurd und hab' mich deshalb, quasi
aus Verzwei ung, auf ein anderes gebiet, das des Ferromagnetismus

begelen.
W. HEISENBER G (1928) [61]

In the previous sections we explored various symmetries of the Dirac equation. In
generala symmetry operator, that is an operator which commutes with the Hamiltonian,
introduces a degeneracy where the degeneratesolutions are related by the symmetry
operation. On the other hand, an "antisymmetric" operator, that is an operator which
anticommute with the Hamiltonian, leadsto solutions related by the operator and that
have energiesof the sameabsolutevalue, but opposite signs. Such an operator is obviously
at play in the free-particle Dirac equation. It has positive and negative energy branches
separatedby an energygap of 2mc?. Positive and negative eigervaluesare pairwise related,
which corresponds to taking the positive or negative root in the corresponding classical
free-particle energy expressionEq.(1.21).

The pairing of eigervaluesis, howewer, lifted with the introduction of an external eld.
Considersomepositive energysolution of the Dirac equation in the presenceof an external
eld

h i

mc+ ( (p+ eA)) g b =0 (1.106)

Its classicalanalogueis obtained by taking the positive squareroot in the corresponding
energy expressionEq.(1.27).

q
E=+ m2c+c2(p+eA) e (1.107)

In order to arrive at a negative energy of the same absolute value we have not only to

choosethe negative squareroot, but reversethe sign of the momertum and the external

elds aswell. An alternative to signreversal of the elds is to introduce a positive charge

+e. This meansthat a positive energy solution of the Dirac equation for a particle of

charge eis a negative energy solution of the Dirac equation for a particle of charge +e:
h e i

mc+ ( (p e€eA)+ c ppo =0 (1.108)

The two Dirac equations are related by the operation of charge conjugation €, which
anticommutes with the Dirac Hamiltonian in the limit of no external eld. We shall
derive the explicit form of this operator.



34

Ch.1 One-electron systems

We rst note that the sign of the momertum may be reversedby complex conjugation.
If we perform this operation on the Dirac equation for charge {e and then multiply both
sideswith a minus sign, we obtain
h e [
mc + ( (p eA)+ c ppo =0 (2.109)

From this we deducethat the charge conjugation operator is antiunitary and can be
expressedas

C= UKq (1.110)

where Ky is the complex conjugation operator and U is someunitary operator de ned by
the relations

U Ul = U(yx UL = (a)
Uu?t = (b

(1.111)

Sincethe -matrices transform as the coordinates, we seethat the operator U is related
to the operation of re ection in the xz-plane Eqg.(1.66). Howewer, all re ections commute
with the -matrix and to fulll condition Eq.(1.111b) a slight mod cation is required.
With the introduction of an arbitrary phasewe arrive at

C=i Ko (1.112)
The e ect of the charge conjugation operator on a 4-spinor is
2 | 3 2 S 3
L s
CE)=i Ko = ¢ E) (1.113)
s L
S L

In particular, if is a free-electron solution of energy +E, then C is a free-electron
solution of energy E.

Let us now look into the physics of charge conjugation. In the early days of quan-
tum medianics, the negative energy solutions was an extremely troublesome aspect of
the Dirac equation. Contrary to classical medanics, the negative energy solutions can
not be discarded, since there will always be a nite probability for transitions between
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positive and negative energy solutions. However, this makes atoms and moleculeshighly
unstable, cortrary to what is obsened experimertally. It can for instance be shown that
the hydrogen atom would deca in lessthan one nanosecondand the electron would cause
a radiative catastrophe as it falls down the negative energy branch through an in nite
successionof transitions[84]. Dirac provided a solution [85] by stating that all negative
energy states are occupied. Transitions down into the negative energy branch, the "Dirac
sea", are then forbidden by the Pauli exclusion principle. On the other hand, transitions
from the negative energy branch into positive energy states may be induced by energies
larger than 2mc?:

2
Epositive energy electron Enegative energy electron ~ 2me (1.114)

Howewer, from charge conjugation symmetry we seethat we can reinterpret the negative
energy electronic states as positive energy states of a particle of electron mass,but with
charge +e, which will be termed the positron. It is the antiparticle of the electron, the
"hole" left by the excited electron. Excitations of an electron out of the Dirac seais then
seento be the creation of an electron-positron pair:

2
Eelectron* Epositron > 2m¢ (1.115)

The positron was obsened experimentally in 1932 [86]. This model leadsto a radical
reinterpretation of the vacuum. The energy-time uncertainity relation allows the cre-
ation of virtual electron-positron pairs at energiesbelov 2mc? sothat the vacuum is now
a "bubbling soup” of virtual pairs that polarize in the presenceof external elds. Its
proper mathematical description is provided by quantum electrodynamics (QED), which
allows particle numbersto vary. In this theory, electronsand positrons appear as quanta
of the quantized Dirac eld, and vacuum uctuations are zero-point oscillations of this
eld. Electromagnetic interactions are mediated by the exchange of virtual photons of
the correspondingly quartized electromagnetic eld. The interaction of the electron with
zero-point oscillations of the electromagnetic eld constitute its selfenergy The combined
e ect of vacuum polarization and self enemgy is obsened experimentally asthe Lamb shift
[87, 88], which in the hydrogen atom leadsto a splitting of the 2s,-, and 2p,-, - atomic
levels by 0:035cm ! (about 10% of the spin-orbit splitting of 2p). The Lamb shift is of
order (Z )* where (1=137) is the ne-structure constart. The scaling to fourth
order in the nuclear charge Z meansthat the Lamb shift can becomequite large in high-Z
systems. In U%'* the splitting due to the Lamb shift is thus of the order 6 10°cm 1, as
hasbeenobsened experimentally[89]. In relativistic molecular calculations we will invoke
the no-pair approximation, that is we shall neglectall QED e ects, which meansthat our
theory can only be correct to the order of the Lamb shift.
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1.7 The Dirac equation in a molecular eld

... John Dalton ... useal square wooden blocks to explain the atomic the-
ory, with the result that a 'dunce, when askel to explain the atomic the-
ory, said: "Atoms are squark blocks of wood invented by Mr Dalton™

T.TRA VIS & T.BENFEY (1992) [90]

After having explored the symmetries of the generalDirac equation in the previous three
sections,we now construct a Dirac operator pertinent to the problem at hand, namely the
description of molecules. For the momert we will restrict our attention to the one-electron
part of the problem, and defer the discussionof the electron-electroninteraction until the
next chapter. Furthermore, we shall for the momert only consider stationary states of
molecular systems. This meansthat the operator i @@ is replacedby the stationary energy
E after extraction of a complex phaseexp( IEt). In the spirit of the Born-Oppenheimer
approximation [91] the nuclei will be treated as stationary sourcesof external elds. This
xes our frame of referenceand thereby ruins Lorentz invariance. It does,however, provide
a workable model for the relativistic description of molecules. Let us therefore consider
the electromagnetic elds generatedby static nuclei.
If a nucleusposessespin I, it generatesa vector potential

I r
20N N (1.116)

An(r) =
where the nuclear g-factor gy is of order unity and is the ne-structure constart. The
ratio betweenthe nuclear magneton y and the correspnding Bohr magneton g for the
electron is inversely proportional to the ratio of massesbetweenthe proton and the elec-
tron. Due to this ratio the magnetic elds generatedby nuclei are about thousand times
smaller than the elds generatedby the electron spin magnetic momert. The magnetic
hyper ne e ects generatedby nuclear spins may therefore safely be treated as perturba-
tions. Magnetic elds from other external sourcesin atypical experimental situation arein
generaleven smaller. We may therefore neglectthe vector potential in variational calcula-
tions. This hasthe advantage that the resulting Dirac operator is time reversalsymmetric
and that its solutions are thereby at least doubly degenerate.As seenin section 1.5, this
may be exploited in a quaternion formulation of the Dirac equation.

The scalar potential due to a nucleusN hasthe generalform

Z
N = N9 o
(ri) = i fqdr

where y is the nuclear charge distribution. In non-relativistic theory, nuclei are usually
treated as point charges

N(ri) = Zn (rn) (1.118)

(1.117)
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(where is the three-dimensional Dirac delta function) giving a Coulombic potertial
Z
)= rn=rora (1.119)
riN

However, this introduces weakl® singularities in the relativistic wave functions at the
nuclear origins [92], which are hard to model in a nite basis approximation. With the
introduction of a nite nucleus model, which in any caseis a better physical model, the
wave functions attain a Gaussianshape at the nuclear origins [93]. This favors the use
of Gaussianbasisfunctions in a nite basisapproximation, which is the standard choice
in non-relativistic molecular calculations. The nuclear charge distribution itself is often
represerned by a single Gaussianfunction [94]

3
N(H)=2Zn X Texp  nTR (1.120)

sincethis leadsto integrals that are easily evaluated. The exponert |y is chosento give
1
a root-mean-squarevalue hri 2z of the nuclear charge distribution

1 3
2 2=
r > (1.121)
equal to the empirical formula [95, 13]
. h ) [
r2 2= 0:836A3 + 0:57 10 ®mbohr (1.122)

where A is the atomic massnumber. This givesthe formula

3 0529167 2

= = . 100 (1.123)
2 (0:836A3 + 0:57

The corresponding potential is then givenin terms of the incomplete gammafunctions F:

r Z,
(ri) = Zn 4—NF0( NTRD)D Fa(X) = exp  xt? t¥dt (1.124)
0

The Gaussianchargedistribution leadsto a long-rangebehaviour of the potential identical
to that of a Coulombic potential, but a nite value at the nuclear origin

r
(rv) =22y (1.125)

0The singularities are weak in the sensethat the wave function is still square integrable.
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The shape of the nuclear chargedistribution is not consideredimportant for chemistry [96],
but the Gaussianmodel can easily be improved by including more Gaussianfunctions. For
instance, a nuclear quadrupole momert could be introduced by inclusion of Gaussiand-
functions in order to model electric hyper ne interactions.

Basedon the discussionabove, we seethat we can choosethe time reversal symmetric
Dirac operator to describe an electron in a molecular eld. The molecular eld Dirac
operator can thereby be given a compact form in terms of quaternion algebra.
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1.8 Appro ximations to the Dirac equation

The number 1/137, the ne structure constant which his teacher Som-
merfeld had intr oduced into physics, was Pauli's link to the 'magic-
symtolic' world with which he was so familiar. Pauli spent the last few
days of his life in the Red Cross Hospital in Zurich, where he died on
15 December 1958. A fact which had disturbed him during these last
days was that the number of his room was 137.

C.P.Enz (1972) [97]

1.8.1 4-comp onent forms

In this section we consider the approad to the non-relativistic limit (n.rl) c! 1 of
the Dirac equation for molecular elds discussedin the previous section. All changesin
the values of obsenablesthat result from switching from the Dirac equation to its non-
relativistic counterpart constitute relativistic e ects. By a perturbation expansionof the
Dirac equation in parametersrelated to the ne structure constart = c¢ 1, it is possible
to obtain approximate Hamiltonians that incorporate relativistic e ects to a given order
in the expansionparameter. The purposeof this sectionis not to provide a comprehensie
overview of such approximate Hamiltonians. Rather we employ perturbation expansionto
identify and investigate the physical corntent of various relativistic e ects. In addition, we
shall discussthe di culties assaiated with the derivation of approximate Hamiltonians.

Let us rst establish the n.r.l. of the Dirac equation. We shall limit our discussion
to the Dirac equation of an electron in the molecular eld of xed nuclei. To align the
relativistic and non-relativistic energy scales,we subtract the rest massterm mc? from
the Dirac equation. This amounts to the substitution

1 0= 14 (1.126)
and leadsto the operator
h [
fiov= Mmc?+c( p)+V; V= e (1.127)

and the corresponding equation
2

3
0 0 icd, icd 2 03 2.3

0 \Y icd, icd, L L

icd, icd ¥ 2mc? 0 S S

icd, icd, 0 ¥ 2mc? S S



40

Ch.1 One-electron systems

Alternativ ely, it can be expressedastwo coupled rst-order di erential equations

vt ¢t ps=EYS (@
c( p) - + ¥ 2mez S E R; (b)

(1.129)

By solving Eq.(1.129b) for S, we nd that the large - and small S componerts are
coupledthrough the relation

E v !

*=o_BE p) " BE)= 1+ ——

~ 2mc

(1.130)

The energy-degendert operator B (E) is totally symmetric under the symmetry group de-
ned by the molecular eld. It isthereforethe operator (  p) that relatesthe symmetries
of the large and small componerts. The large and small componerts are thereby seento
have opposite parities, and we may anticipate that in a nite basisapproximation to the
Dirac equation, the large and small componerts will have to be expandedin separatebasis
sets.

Electronic solutions of the Dirac equation Eq.(1.129) have energiesE 0, which means
that the small componerts are generally of order smallerthan the large componerts and
vanishin the n.r.l.,, hencethe notation employed for the upper and lower two componerts.
The roles are reversedfor positronic solutions (E 2mc?). Note, howewer, that for sin-
gular potentials sudch asthe Coulombic potential the n.r.l. is only reached asymptotically
and even for a nite nucleusEq.(1.130) indicates that the small componerts of electronic
solutions are to a large extent localized at the nuclear origins.

It is obvious from the form of Eq.(1.129) that its non-relativistic limit cannot be
obtained directly. However, we may follow the approac of Kutzelnigg [98] and perform a
change of metric by the substitution

2 3 2 .3 2 /3

4 51 4 5=4 5 (1.131)
S L c S

In matrix form we obtain the equation

2 g ( p) 32 3 2 32 3

L 1 0 L
" #
§ 9 24 5-g4 54 5 (1.132)
( p) 2m 1 o L 0 c? L

which for electronic solutions goes into the 4-componert non-relativistic Levy-Leblond
equation Eq.(1.42) in the non-relativistic limit. Note that in this approac the upper and
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lower two componerts are of the sameorder in , which we have indicated by using the
superscript L on both componerts. The n.r.l. for positronic solutions is obtained by the
analogoussubstitution

2 3 2 3 2
L S cL

4 51 4 5-14 5 (1.133)
s s s

The fact that positronic and electronic solutions have separatenon-relativistic limits may
be exploited to imposeboundary conditions on approximate Hamiltonians, so that they
are restricted to electronic solutions only. The modi ed Dirac equation Eq.(1.132) forms
the basisfor the direct perturbation theory of Kutzelnigg [98, 14].

The n.r.l. of the modi ed Dirac equation clearly demonstratesthat spin is not a rela-
tivistic e ect. The non-relativistic spin-freeHamiltonian of an electronin a molecular eld
is, howeer, straightforwardly obtained from the non-relativistic Levy-Leblond equation
by elimination of the small componerts. In the non-relativistic domain, the spatial and
spin degreesof freedom can therefore be treated separately A separation of spin-free and
spin-dependert terms is possiblein the Dirac equation as well, as shovn by Dyall [99].
His approad involvesa changeof metric rst suggestedby Kutzelnigg [10Q

2 .3 2 .3

4 5,4 5  yhere S= U Pl (1.134)
S L 2mc

and leadsto two coupled second-orderdi erential equations

2 3 2
v f 2 .3 1 0 °
( ) 24 5= E§ (1.135)
E + PV P 4 L o T Z
4m2c? 2mc2
involving the kinetic energy operator
_ P
1= o (1.136)

The Hamiltonian of this modi ed Dirac equation can be split into a spin-free Fist;V and a
spin-dependert h%d;v part using Eq.(1.38):

( PYC p=(C p) Vp =pV¥p i p V¥p (1.137)
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We obtain
2 3
v o1 8 0 0
M. :§ Z; 15y :§ z 1.138
D;V p\/) P D;V I p\/) p ( )
4m2c? 0 Am2c2

An advantage of this approad is that the functions “ and ' have the samesymmetry
and may therefore be expandedin the samebasisin a nite basisapproximation.

1.8.2 Reduction to 2-comp onent forms

The majority of approximate methods are basedon a reduction of the Dirac equation to
two-componert form. This is accomplishedeither by elimination of the small componerts
(esc)or by aunitary transformation that seekgo decouplethe large and small componerts,
e.g. the Foldy-Wouthuysen(FW) transformation[101]. It hasbeenshavn by Mossthat the
two approadesare equivalert for free particles, in which casethe FW - transformation is
available in closedform. We may straightforwardly generalizethis conclusionto include
external elds [10Z. Our exposition and notation follows closelythat of van Lenthe et al.

[103.

Elimination of the small comp onents

Consider rst the method of elimination of the small componerts. The Dirac equation
can be castin the form

— ﬁ11 ﬁ12 1 _ 1
fip =E ) for o ; = E ; (1.139)

which may be written as a pair of coupled equations:

fin 1+h 2 = E 1 (a)

(1.140)
firy 1+Axn 2 = E 2 (b
We solve Eq.(1.140b) for »
1
o= E fp Ay = (1.141)

and insert the result into Eq.(1.140a), so that we obtain

h i
1
fiesc 1= fp+Rn E A Ay 1= Apn+fhn 1=E 4 (1.142)
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Note that fi®s® is energy-depndert, but the equation may be solved iterativ ely. This does

not, howewer, decoupleour equations: After solving Eq.(1.142), 1 and E may be inserted

in Eq.(1.141) to obtain ,. A decoupling may be accomplishedby a renormalization.

This step is furthermore important in order to ensurean e ective Hamiltonian that is

Hermitian. Let  be normalized to unity. We seeka normalized function of the form
=0 1 where O is a normalization operator:

D E
hji=z= &1jO 1 =hj i=hqj 1it+hyj 2i=1 (1.143)

Using Eq.(1.141) the nal term is recastas
D E
hij gi+haj 2i= 11+ V) 1 (1.144)

We may therefore choose® as

p
A= 1+ v (1.145)
and the Hamiltonian for becomes
p h i
fe'f = Ofescd 1= 1+ v A+ hp, p - 1_y (1.146)
+

This, then, is the e ectiv e two-componert Hamiltonian in its nal form.

Decoupling by unitary transformation
The above decouplingmay be accomplishedthrough a unitary transformation aswell.
UApU U = EU (1.147)

The unitary operator U may be expressedas[14

u=ot 1 ' )y ul=961 ! é:p1+v (1.148)

1 1 '
Our transformed Hamiltonian becomes
fo, o
1_

UfpU 1= o Ao

22

(1.149)

4t A+ iz + YA+ YR A gy ¥+ fizg + YAz 41

fiig R + A+ A fiig Y Ay Ay Y+ R
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From this we seethat the conditions for decoupling of the two equations are

0 (@)

ﬁll ﬁlz + ﬁ21"' ﬁ22
(1.150)
fiig Y+ hip YRy Y+ YRp = 0 (b)

The two equations are seento be simply Hermitian conjugatesof ead others. By multi-
plying Eq.(1.150) equation with ¥ from the left and rearranging we obtain

Yoo+ YR = Y A+ Y fip (2.151)

The latter relation may be usedto simplify the upper diagonal transformed Hamiltonian

h i
% Pl—y fig+ iy + YA+ YRy pE—

1+ 1+ VY
p h [ (1.152)
1+ VY
We seethat this is exactly the sameexpressionas Eq.(1.146) if we choose
1
= E fp Axn (1.153)

Thus the two decoupling schemesare equivalert.

1.8.3 2-comp onent forms

The equivalenceof the two decoupling shemesmeansthat when one considersapproxi-
mations one can choosethe schemethat is best suited to the mathematical manipulations
involved. The expressionfor the e ectiv e two-componert Hamiltonian Eq.(1.146)is some-
what deceptive in that it givesthe impressionthat the large and small componerts can
be completely separated.

This is, howewer, only true for free particles and not in the presenceof an external
eld. The e ective two-componert Hamiltonian derived in the previous section has the
form

RfM = Ofed 1= " Tx v 0+ S ( PBEN( P) P (1154)
2m 1+ Y

where

1
= omcB(E)CP) (1.155)
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By a slight rearrangemen we obtain
h [
feff = fiesc fiesc,§ O 1 (1.156)

In the caseof free particles the normalization operator @ commutes with fis¢, sothat the
secondterm in the e ective Hamiltonian Eq.(1.156) disappears. The remaining equation
reads

feff = fiesc =2 p) E+2me® *( p) = % 1+ %Cz S le (1.157)
We rearrangeto

E2+2mc’E p? =0 (1.158)
and solve for E, which gives

At = B, mc? =E ; Ep= P m2ct + c2p? (1.159)

The sign refers to free electron (+) or positron ( ) solutions. The squareroot in the
operator represerts no problem, sincewe can solve this equation in momertum space.

With the introduction of external elds the normalization operator O doesnot in gen-
eral commute with fies¢ and the e ectiv e two-componert Hamiltonian cannot be expressed
in an operationally useful form. It hasto be approximated by somesort of perturbation
expansionfrom which the energy dependencecan be iterated out. The major dicult y
with sudh an approad is that it tends to give operators that are ill-b ehaved. A simple
example is provided by the e ective two-componert Hamiltonian for free electrons. An
expansionto secondorder in (p=md? gives

r_. !

2 4
A'f = me2 1+ % 1 = zp_m ﬁ+ 4 (1.160)
The rst term in the expansionis the standard kinetic energy operator T. By comparison
with EQ.(1.28) we recognizethe secondterm as a rst order correction to the kinetic
energy resulting from the increaseof the electron masswith the velocity. It is therefore
commonly referredto asthe mass-velgity term. There are two di culties assaiated with
this expansion:

1. The expansionin (p=mq? is valid only for p  mc which in generaldoesnot hold
true. In particular, p! 1 asr! 0in the presenceof a Coulombic potential.



46

Ch.1 One-electron systems

2. Even though ﬁf” is de ned for free electrons only, i.e. for energiesg > 0, the
operator resulting from the secondorder expansionabove is unbounded from below
due to the presenceof the mass-\elocity term. The inclusion of higher order terms
lead to uncontrollable oscillations.

Let usbriey look at three e ective Hamiltonians for an electronin an external molecular
eld:

1. The Pauli operator.
2. The regular approximation.
3. The Douglas-Kroll operator.

The three e ectiv e Hamiltonians can berelated to three di erent expansionsof the energy-
dependert operator

E v !
B(E)= 1+ 1.161
(E) T (1.161)
The Pauli-op erator
In the rst approac B(E) is expandedusing the seriesexpansion
X E V
1_ k k. -
(1+ X]_) - ( l) Xl’ Xl - W (1162)

k=0

The Pauli-operator [52] is obtained by an expansionto secondorder in x; and has the
form

fP = ﬁnr + ﬁmv + f'\]so"' ﬁDar (1.163)

The rst term is simply the non-relativistic Hamiltonian

fine = T+ 0 (1.164)
whereasthe secondterm is the mass-\elocity operator
_p
A = o35 (1.165)

The third term is the spin-orbit operator [104, 105 106, 16]

Ao = 4::—%2 (E r) (1.166)
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whereE is the molecular eld. Its physical cortent can be understood by comparisonwith
Eq.(1.26). When an electron movesin the molecular eld it experiencesa magnetic eld
in its own rest frame, in addition to the electric eld. The spin-orbit operator represens
the interaction of the electron spin with this magnetic eld, asmediated by the electronic
motion. The operator couplesspin and spatial degreesof freedom and therefore makes a
separatetreatment of spin and spatial symmetry impossible.

The fourth term is the Darwin term

e
sz (1 E) (1.167)

and can be understood as a correction to the electric potential of the nuclei felt by the
electronif we assumethat the electron (or its charge) performsa rapid isotropic oscillatory
motion (Zitterbewayung [107] about its meanposition r. In order to seethis, we expand
the potential about the mean position r

(r+ )= M=+ r) (r)+%( r)?(r)+: (1.168)

and take the time averagé?! [40]

h(r+ )i = (M)+3 ( r)? (n+:
(1.169)
= (N+% 2r2(n+::
The Darwin term arisesfrom the secondterm if we make the identi cation
3
2 _
= 7(2mc)2 (2.170)

The extraordinary dynamics of the Dirac electron is illustrated by the fact that it has
three setsof independert dynamical variables: position r, momertum p, and velocity ¢ .
The latter operator is found from the Heiserberg equation of motion
h [

da .
— =i fip;r =¢ 1.171
dt b ( )
The extra degreesof freedomaccomalates spin, and it has therefore beensuggestedthat
spin arisesfrom the Zitterbeweyung interpreted asinternal charge oscillations in the elec-
tron [108 109 110, 111].

The Pauli-Hamiltonian is not a very satisfactorily approximation to the Dirac equation
for two reasons:

1 The rst order time in the Taylor expansion the disappearsdue to the assumedisotropy of the Zitter-
bewegung
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1. It contains the mass-\elocity operator, which makesit unbounded from belowv and
therefore not suited for variational calculations.

2. If we make the ass@iation E ¥ = T, we seethat the expansionparameter x; is
approximately (p=md? which goesto innit y asr ! 0 in singular potentials and
therefore leadsto the introduction of highly singular operators. In particular, the
spin-orbit operator in a Coulombic potential ¥ = Z=r attains the form 12

z |
sozm 53 (1.172)

which hasanr 2 dependence.The Darwin term becomesa Dirac delta function

Rpar = (r) (1.173)

2m2c2
and thereby only cortributes a positive energy shift determined by the electron den-
sity at the nuclear origins, which is not very satisfactorily in a variational calculation.
Higher expansionsin x1 Eq.(1.162) leadsto higher singularities and unde ned prod-
ucts of three-dimensional delta functions. Note that the situation is not alleviated
with the introduction of nite nuclei, for even though the expansion parameter no
longer goesto innit y asr ! 0, it will still have very large valuesnear the nuclear
origins. This will beillustrated by a numerical example below.

Further discussionof the Pauli-operator is found in Refs. [113 114 4].

The regular appro ximation

Singularities in the e ectiv e two-componert Hamiltonian canbe avoided by a better choice
of expansionparameter. A regular expansionhasbeensuggestedoy van Lenthe et al. [103

E

2mc? _
T 2me2  V

— + 1. .
B(E) YRRy 1+ x2) ~; X2 (1.174)
The extraction of a prefactor from B (E) meansthat the zero{order Hamiltonian in the

regular approximation (ZORA)

2

hEoRt =0+ p) 2me? Vv

( p) (1.175)

12Expressionsfor the spin-orbit and Darwin terms with a Gaussian nuclear charge distribution has been
derived by Dyall and Fgri [112].
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is not identical to the non-relativistic Hamiltonian. Rather, it is identical to the zero{order
e ective Hamiltonian derived by Chang et al. [115. It can be reformulated as

% @ ?

f\ZORA _ {y
P 2mcz VvV P 2mez vV

e (E r) (2.176)

By comparisonwith Eq.(1.166)this shows that spin-orbit interaction is presern already at
the zero{order level.

We may illustrate the di erence betweenthe two expansionsEq.(1.162)and Eq.(1.174)
by a numerical example. For an atomic stationary state the B (E) operator may be consid-
eredasan analytic function of the radial variable r [116. This allows a direct comparison
of expansions.| have chosenthe one-electronsystem Rn®>* astest example. The nuclear
charge distribution has beenmodelled by a Gaussianfunction Eq.(1.120) with exponert

= 1:3 10, corresponding to a root-mean-squarevaluetri = 1:1 10 * bohr of the nuclear
chargedistributions. Using the atomic 4-componert code GRASP [117], the energyof the
1s,-, orbital wasfound to be E1s,_, = 415466204H 13,

Due to the useof a nite nucleusthe potential doesnot goto innit y asr! 0, but it

doesread a large value
r_

V)= Z 2 —= 1117 1P (1.177)

This meansthat x; is not a very good expansionparameter near the nuclear origin. This
is clearly displayed in Table 1.2 wherel have listed the valuesof the potential, of B (E) and
the two expansion parametersx; and X, at the nuclear origin and at innit y. In Fig.1.1
the expansion parameters are plotted as functions of r. It can be seenthat whereasx,
goesmore or lessto zeroat the nuclear origin, X, goesto a value that is about thirt y times
unity. Expansionsup to order two are plotted in Figures 1.2, 1.3 and 1.4. It can be seen
that the expansionin x» is essetially corvergedalready to secondorder. Limiting values
for the two expansionsup to order v e are given in Tables1.3 and 1.4. As a measureof
the generalcorvergencel have calculated the integral 4

21 iB(r;E) b(r;E;x;n)jdr

: (1.178)
0

(x;n) =

whereb(r; E;x; n) represens an expansionof B (E) asa function of r in terms of expansion
parameter x up to order n.

The test example clearly demonstrates the superiority of x, over x; as expansion
parameter. The regular approximation generatesoperators that are never more singular

B This may be compared with the value Eis,., = 415842408H obtained with a point nucleus
¥The integrals were evaluated using the numerical integration routine of GRASP [117].
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than the external potential. However, the mass-\elocity operator appearsin the rst order
Hamiltonian, which meansthat it is hasno lower bound and can not be usedin variational
calculations.
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Table 1.2: Limiting valuesof the potential, expansionparametersand B (E)

r=2=0 rt 1
X 1:117 10° 0:000
B(E) | 326610 2 | 1124
X1 29.617 110610 1
X2 360010 3| 110610 1!

Table 1.3: Expansionin x;
Order r==0 rt 1
0 1:0000 1:000 2:400 10!

1 2:862 100 1111 1:260 1(?
2 8485 10 1:123 3:208 10°
3 2:513 10 1:124 8839 10*
4 7:443 10° 1124 2:492 1P
5 2:204 10’ 1:124 7:105 107
Table 1.4: Expansionin X;
Order r=20 r! 1

0 325410 ¢ 1:.000 1:781 10!
1 326610 2 1110 1:945

2 326610 2 1123 2:147101
3 326610 2 1:124 2:37010 2
4 326610 2 1124 2:61910 3
5 326610 2 1124 2:89310 4
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-0.2 !

0.0 0.1 0.2

r (bohr)

Figure 1.1: The expansionparametersx; Eq.(1.162) and x, Eq.(1.174) plotted as a function of r

for the 1s,-,-orbital of Rn%* .
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Figure 1.2: Comparison of the exact function B (E) and zero{order expansionsin x; Eq.(1.162)

and x, Eq.(1.174) for the 1s,-,-orbital of Rn8* .
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Figure 1.3: Deviations of rst order expansionsin x;
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The second order Douglas-Kroll operator

In order to avoid unboundednessof approximate Hamiltonians, we realize that the free-
electron operator I?p Eq.(1.159) must be retained in closed form. Since this operator
involvesthe squareroot of the momertum operator, the desiredtwo-componert Hamilto-
nian is therefore preferably derived in the momertum represenation. The Douglas-Kroll
operator [11§ may be thought of asan expansionin

Xz — (1.179)
mc2 + Ep

We seethat ép appears explicitly in the expansion parameter and is thereby never ex-
panded. Furthermore, x3 leadsto a regular expansionof B (E) since,in the presenceof a
Coulombic potential, p! 1 asr! 0. The expansionthereforeintroducesno singularities
more sewere than the potential. Note that to rst order in 2 x3 reduceto xi, but the
two expansion parameters cannot be compared directly since x3 cortains the non-local
operator Ep,.

The Douglas-Kroll operator is formally derived by rst performing a free-electron
Foldy-Wouthuysentransformation on the Dirac operator and then expandingthe resulting
operator in the external potential. The operator hasthe form

APK = B, mc?+ Ve (1.180)

where the e ectiv e potential to secondorder is given by

h [
Vet = A 0+ ROR A+ W,y ép+% Wi, + EWy Wy (1.181)
Kinematical factors are
S =
2
A= Ep+ mc” (1.182)
2E,
introduced by renormalization, and
p= SC P (1.183)
Ep + mc?
which regularizespotentials since[119
imR=( n); n=-L (1.184)

pl1 T
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Finally, W; is an integral operator with kernel
: ( )
Wi ppl = & hlf\§ B IA\ ¥V (p;p9
1 p;p? = AR) R(P) R A =& (1.185)
p po
Here ¥ (p; p9 denotesthe Fourier transform of the external potential. The Douglas-Kroll
operator is not straightforwardly implemented dueto useof the momertum represeration.
Applications to chemical systemshave beenmade feasiblethrough the work of He et al.
[120, 15, 1217].
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Chapter 2

Man y-electron systems

...there is an alternative formulation of the many-body problem, i.e.
how many bodies are required before we have a problem ? G. E. Brown
points out that this can be answered by a look at history. In eighteenth-
century Newtonian mechanics, the three-tody problem was insoluble.
With the birth of generl relativity around 1910 and quantum electrody-
namics in 1930, the two- and one-tndy problemsbecame insoluble. And
within modern quantum eld theory, the problem of zero bodies (vac-
uum) is insoluble. So, if we are out after exact solutions, no bodies at
all is already too many !

R. D. MATTUCK [122]

A many-particle systemrepresens no many-particle problem unlessthere is somesort of
interaction betweenthe particles. For an electronin a molcular eld, we have sofar avoided
many-body problemsby relegating nuclei to the role of stationary sourcesof external elds.
With the introduction of electron-electroninteractions we have a true many-body problem
at hand, and assud it cannotin generalbe solved analytically 1. In the relativistic domain
afurther complication is that the Lorentz invariant electron-electroninteraction cannot be
expressedn a useful closedform, which meansthat approximations must be intro duced.
In this chapter we will rst discussthe nature of the electron-electroninteraction in
relativistic systems. We then construct the Hamiltonian that will be usedin relativistic
calculations. To avoid overlap of material in the thesis | shall summarize the papers at
this stage. The readeris adviced to go through the papers at this point (section 2.2.3).
Before concluding, | will discussvarious features of relativistic molecular calculations.

1An exactly soluble non-relativistic two-electron atomic model is discussedin [123).
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2.1 The electron-electron interaction

A friend of ours, Hulme, was walking many years agowith Paul [Dir ac]
in Cambridge, with something rattling in his pocket, and he said apolo-
getically, 'l am sorry about this noise. | have a hottle of aspirin in my
pocket, and | took some as | had a cold, so it is normal for it to make
some noise'. There was a silence for a while and then, so our friend
Hulme told us, Paul said, 'l supmse it makesa maximum noise when
it's just half full.'

R.Peierls (1972) [61]

In classical electrodynamics the interaction of two electronsis mediated by the electro-
magnetic eld. In cortrast, quantum electrodynamics (QED) views this interaction as
mediated by the exchange of virtual photons. The link betweenthe two pictures is that
photons appear as quanta of the quantized electromagnetic eld. The electrons them-
selwes, together with their antiparticles (positrons), are quanta of the quantized Dirac or
electron-positron eld. An important consequenceof eld quartization is that it allows
the number of quanta or particles to change, as for example in the creation or annihi-
lation of electron-positron pairs. Relativistic molecular quantum medanics in general
operate within the framework of the no-pair approximation, in which pair creation is pro-
hibited. This is equivalent to working with an unquartized Dirac eld. Furthermore, the
electron-electroninteraction is usually represened solely by the instantaneous Coulomb
interaction, which meansthat all retardation and direct magnetic e ects are ignored. In
this section we discussthe full electron-electroninteraction of QED and to what extent
the Coulomb interaction is a good approximation for our purposes.It will be seenthat a
changeof gaugealters the form of the expressionfor electron-electroninteraction in QED
already at order (Z ). In order to understand how this comesabout, it is instructiv e to
explore the link betweenclassicaland quantum electrodynamics.

In classical electrodynamics the electric E and magnetic B elds are determined by
Maxwell's equations

r B =0 (a)
@
r E = — b
@ ® (2.1)
r E = 4 (©
r B = 0—12 4 j+ % (d)

where is the charge density (charge per unit volume) and j is the current density (ow
of charge per unit time per unit area acrossa surface). Maxwell's equations are Lorentz
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invariant and weretherefore, prior to the advert of the theory of special relativit y, denoted
non-relativistic, sincethey did not obey the Galilean transformation Eq.(1.1). The electric
and magnetic elds may be represerted by a scalar and vector A potertial

@\
E=r - B=r A 2.2
a (2.2)
Whereasthe electric and magnetic elds are uniquely determined by the scalarand vector
potertials, the inverserelation doesnot hold true. As mentioned in sectionl1.1, the electric

and magnetic elds are invariant under gaugetransformations

@
Al A f; ! — 2.
T +@ 23)

wheref is any scalarfunction of spaceand time coordinates. Speci ¢ choicesof gaugeare
the Coulomb gauge

r A=0 (2.4)
and the Feynman (Lorentz) gauge
A =0 (2.5)

The Feynman gaugeis expressedsolely in terms of 4-vectors and is therefore manifestly
Lorentz invariant.

The origin of the name "Coulomb gauge" is seenfrom the following: If we insert the
de nitions Eq.(2.2) of the electric and magnetic elds into Eq.(2.1c) and usethe Coulomb
gaugecondition Eg.(2.4), we obtain

@r A) 2

r E=r ? =—“=1 2 =4 2.6
a (2.6)
which is simply the Poissonequation with solution
Z
ey — (r°t o
(r;t) = ir r‘]dr (2.7)

The scalar potential in Coulomb gaugeis thereby seento be the instantaneous Coulomb
potential due to a charge density (r;t).

In the absenceof charge and currents ( = 0;j = 0), the scalar potential is identically
zeroand insertion of Eq.(2.2) in Eq.(2.1d) givesthe equation

1 @A

r 2A 2@ - 0 (2.8)



60

Ch.2 Man y-electron systems

which describesthe propagation of electromagnetic wavesin free space. Solutions have
the form

A(rit)= Apgdkr 2.0 (2.9)
where isthe frequency Direct application of the Coulomb gaugecondition Eq.(2.4) gives
k A=0 (2.10)

which meansthat the vector poterntial A EQ.(2.9) is perpendicular to the direction of
propagation k of the wave. The vector potential is then saidto betransversal. In Coulomb
gaugethe electric eld splits up into a transversalE, and longitudinal E, part de ned by

_ . @
"k =0 ) B = -3 (2.11)

r Ek= 0 ) Ek = r

The magnetic eld B canonly have a longitudinal contribution, which is explicitly shavn
by Eq.(2.1a). If we now insert the de nition of the longitudinal electric eld E into
Eq.(2.1c), we see,analogousto Eq.(2.6), that the longitudinal eld is assaiated with the
instantaneous Coulomb interaction and is uniquely determined by the charge distribution

. This alsodemonstratesthat in Coulomb gaugeall retardation and magneticinteractions
erter the transverse part of the electromagnetic eld. A disadvantage of the Coulomb
gaugeis that it is not Lorentz invariant, so that if one changesthe frame of reference
a gaugetransformation is in general neededin order to reestablish the gauge conidtion
Eq.(2.4).

The link between classicaland quantum electrodynamics can be summed out by a
short historic survey: At the end of the last certury it was realized that the electro-
magnetic eld could be treated as a collection of independert harmonic oscillators, eadh
assaiated with a particular frequency . A major step towards quantum medanics was
the postulate made by Planck in 1900[124 stating that the energy absorbed or emitted
by such radiation oscillators were not corntinuous, but appearedin quanta of h . This pos-
tulate was necessaryin order to avoid the radiation catastrophe in blackbody radiation.
In 1905 Einstein explained the photoelectric e ect by assumingthat the electromagnetic
eld could be consideredas a collection of independert energy quanta® of magnitude h .
Then, in 1927, Dirac laid the foundations of quantum electrodynamics by introducing
creation and annihilation operators of photons to describe the interaction of light with
matter. Finally, in 1932 Bethe and Fermi described electromagneticinteraction in terms
of virtual photon exdhange. This leadto expressiondor the electron-electroninteraction in

2The word ‘photon’ was rst introduced in 1926 by G.N.Lewis [125].
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con guration spacewhich dependson the momertum ! transferred by the exchangedpho-
ton [126 127 11, 128 129, 137. In the Coulomb gaugethe electron-electroninteraction
0 (1;2) (single-photon exchange) is given by

. exp (il 1or 1
L Zexp(il 12ri)* (1 F1)( 21 2) P! 12712)

1
c(1;2) = —
G c(L:2) i rio I 45r12

(2.12)

wherer» is the interelectron distance. In the Feynman (Lorentz) gaugethe interaction is
given by

0r(Li2)= 2 2exp(il 12r2) (213)

The exponertial part exp(i! 12r12) represens the retardation of the interaction. The
real part of the exponertial leadsto shifts in energy levels, whereasthe imaginary part
contribute only to the level width [11] and will be omitted in this discussion(i.e. we may
replace exp(i! 12r12) by cos(! 12r12) in the expressionsabove). In the expressionsabove
we recognize(1=r1») asthe instantaneous Coulomb interaction and ( 1 ») =ri» asthe
instantaneousmagneticinteraction of the electron spins. We seethat in the Lorentz gauge
both the the electric and magnetic interactions are explicitly retarded, corresponding
to the exchange of both transverse and longitudinal photons. In the Coulomb gauge
only the instantaneous magnetic interaction is explicitly retarded, which corresponds to
quartization of only the transversepart of the electromagnetic eld [131, 132. This can
be understood from the discussionof Coulomb gaugeabove.

The momertum transfer ! of the exchanged photon refersto one-electronstates suc
that if we considerthe transition probability

JC(1)D(2)j0r (1;2) A(1)B(2)i}? (2.14)

betweentwo-electron statesjA(1)B (2)i and jC(1)D (2)i , the ! is de ned as

| =1 pc = LA Cjz!BDzj"B "DJ

- — (2.15)

where the "'s are one-electronenergies[127. Consequetly, the evaluation of Eq.(2.14)
requires the de nition of such one-electronstates. This re ects the independen-particle
approad inherernt in QED. The quartization of the Dirac eld e ectiv ely de nes electrons
and positrons [133 134, 135, since the creation and annihilation operators refer to a
complete set of solutions of the Dirac equation. The "free picture” employs the complete
set of solutions of the free particle Dirac equation, whereasthe "b ound state interaction
picture” or "Furry picture" [136 usethe complete set of solutions of the Dirac equation
in the presenceof some external eld. The complete set of bound state electrons and
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positrons are related to the set of free electronsand positrons by a unitary transformation
which "dressesup" the particles.

We immediately realize that the ewvalution of matrix elemers in con guration space
involving the ! -dependert electron-electroninteraction becomesexceedinglydi cult.  For
single-con guration calculations one-electron energiesmay be approximated by Koop-
mans' theorem, whereasno clear-cut de nition of one-electronenergiesexists in a multi-
con gurational approac [127]. We will therefore have to resort to approximations which
eliminatesthe ! -dependence.lt turns out that the consequencesf this approximation are
not all that sewere, sincecorrectionsdue to the ! -dependenceare found to cortribute only
to orderZ® 4[137 13§. In the limit ! ! 0O (the low-frequencylimit), the electron-electron
interaction in the Coulomb gaugereducesto the Coulomb-Breit interaction

'Ii'mog! c= gCoulomb + gBreit (2.16)

consisting of the instantaneous Coulomb interaction

gCoulomb — i (217)

ri2
and the Breit term [139

gB et = 1 2, (CaragCa2raro 2.18)
2 2

wherer 1 andr , act only on r12 and not on the wave function. The Breit term is usually
expressedas

Breit _ 1 2, (1 r2)( 2 r12) 219
g 2I’12 2rf2 ( ’ )

Correspondingly, the electron-electron interaction in the Feynman gauge reduce to the
Coulomb-Gaunt interaction

!”!mo g! F = gC0u|omb + gGaunt (2.20)
where the Gaunt-term [140

geaunt = 1 2 (2.21)
2

represerts the direct magnetic interaction of electron spins. Note that the Breit term may
be written in terms of the Gaunt term and a gauge-degndert term

gBreit = gGaunt 4 guauge. goauge = (1ra) (22 r2)r (2.22)
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The Coulomb-Breit interaction is correct to order (Z )2. In order to achieve the same
accuracyfor the low-frequencylimit of the electron-electroninteraction in Feynmangauge,
it is necessaryto add a ! -dependert term

12 (2.23)

Due to the appearanceof this term to order (Z )?, it hasbeenclaimedinconsistert to use
the Coulomb-Gaunt interaction in relativistic calculations [141, 130. Howewer, the choice
of what electron-electronpotential to useshould be basednot only on order analysis, but
alsoon what physical e ects are included and, in the nal instance, on the computational
demands.

Let us therefore look at the physical content of the ! -independert two-electron op-
erators. We can do so by performing a reduction of the two-electron operators to a
two-componert form correct to order (Z )2, analogousto the derivation of the Pauli-
operator Eqg.(1.163) in section 1.8. The Coulomb-Breit interaction has beenreducedto
two-componert form by Chraplyvy et al. [142 143 144 by a Foldy-Wouthuysen trans-
formation, and the result is discussedin Moss [40]. The result may be combined with
the Pauli-operator to form the so-calledBreit-Pauli Hamiltonian [145. | have redonethis
derivation for the Gaunt and gaugeterms separately in order to seewhat terms in the
Breit-P auli Hamiltonian are derived from the Gaunt term. Details about the derivation
are provided in Appendix B. Here we just state results. The instantaneous Coulomb
interaction reduceto

gCoqumb: % (a)
Wizrfz[ 1 (ri2 p1) 2 (riz p2)]l (D) (2.24)
% (riz) (©)

We expect the terms generatedby the instantaneous Coulomb interaction to be analogous
to the terms in the Pauli-operator Eq.(1.163) depending on the nuclear potential sincewe
have simply replacedthis potential by the corresponding potential from an electron. We
do indeed nd the expected analogy and can interpret the various terms as follows:

(&) Coulomb interaction

(b) Spin-own orbit interaction:
the spin-orbit interaction of a electron generated by the electric eld of another
electron.

(c) Darwin-type correction to the Coulomb term:
a correction to the Coulomb interaction Eq.(2.24a) due to Zitterbewayung
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The Gaunt-term reduceto

O o (P ) (@
+ 2m27i2r§’2[ 1 (riz p2) 2 (riz pa)l (0
+ ﬁ (1 2 3 (1 r2)( 2 r) (0) (2.25)
oz (1 2) () (@
gy, (2 1 ) @
e (1) (f)
and the gauge-termcortributes
goatoe : ngcz(pl roPzra2riz  (a)
* g 2 T 2) (b (2.26)
e () ()
By adding cortributions from the two terms we obtain the reducedBreit term
e r Ay P (L T D2 T DT ()
mec 2
" a1 2 ) 2 (2 p) I
b A ) 32 ) (@
(1 2) (1) @

where the individual terms are interpreted as folllows

(a) Orbit-orbit interaction:
This term correspondsexactly to the Breit term Eq.(2.18) if we make the substitution
p

! e (2.28)
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This correspondsto the transition from the relativistic velocity operatorc Eq.(1.171)
to the corresponding non-relativistic operator (p=m). The orbit-orbit term repre-

serts the classicalretardation correction to the Coulomb interaction in the Coulomb

gauge. It is readily rearrangedto its more corvertional form [14§

_ 1 p1p2, (P1 r12)(p2 riz)
m2c2  2ryp 2r3,

(2.29)

The rst term, which is derived from the Gaunt term, may be interpreted as a
current-current interaction. The secondterm stemsfrom §9249¢ and is consequetly
gauge-degnden.

(b) Spin-other orbit interaction:
the interaction of the spin of an electron with the magnetic eld generatedby the
current of another electron. There is no analogousterm arising from the molecular
eld, sinceteh nuclei are assumedto be a stationary sources.

(c) Spin-spin interaction:
direct dipolar interaction betweentwo spins.

(d) Fermi-contact interaction:
it can beregardedasa nite-size correction to the spin-spin interaction

In conclusion,we seethat with the exception of the gauge-degndert term Eq.(2.26a),
which cortributes to the orbit-orbit interaction, the whole physical content of the Breit
term is provided by the Gaunt term aswell. The Gaunt term in addition givesrise to
two terms. The rst Eq.(2.25f) correspndsto a Darwin-type correction of the Coulomb
interaction, whereasthe other has a lessstraightforward physical interpretation. The two
extra terms are cancelledby corresponding terms from §9249€. It should be noted that none
of the extra terms are spin-dependert, which meansthat the Coulomb-Gaunt interaction
will givethe total spin-orbit interaction correctto order (Z )2. In general,the Gaunt term
accourts for about 90% of the Breit term in atomic calculations and shifts the total energy
upwards, whereasthe gauge term lowers the total energy [147. Multicon gurational
calculations on helium-like ions [127] has shown that at around Z = 50 the correlation
energyfrom the Gaunt term becomedarger than the correlation from the Coulomb term.
Howewer, the Gaunt term appearsto be of importance only near nuclei [126], which makes
the Gaunt interaction mainly localizedto atoms, sothat it is not expectedto signi cantly
change molecular properties such as bond lengths. Our Dirac-Fock calculations on PtH
(paper 1V) and previous calculations on hydrides of group IVA by Visser et al.[148 show
that the Gaunt term has a negligible e ect on molecular bond lengths. Visser et al. [14§
found that the Gaunt term favors bond expansion,yet in PbH, the expansionis only 0.17
pm.
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From the discussionabove, we can concludeasfollows: The Coulomb interaction, which
may be regarded as the zeroth order term of an expansionin (Z )? of the full electron-
electron interaction, appearsto be sucient for the calculation of molecular potential
surfaces. Corrections of order (Z )2 to the Coulomb-interaction are largely atomic in
nature and needonly be consideredwhen properties dependert on the electronic density
in the nuclear region are studied. The Gaunt term alone ensurescorrect cortributions
from electronic potentials to the total spin-orbit interaction to order (Z )2 and may
therefore be included in accurate calculations of spin-orbit splittings. The Gaunt term is
straightforwardly implemented in a nite basisapproximation, sinceit reducesto ordinary
Coulomb repulsion integrals in a scalar basis. The gauge-degndert term, on the other
hand, leadsto more complicated two-electron integrals.
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2.2 Relativistic molecular calculations

There is something fascinating about scienae. One gets such wholesale
returns of conjecture out of such a triing investment of fact.

M.TW AIN (1874) [149]

Theoreticians get such amazing returns from such a small investment
of fact combined with a few hours on a Cray Y/MP.

I.M.Klotz  (1990)

2.2.1 The Dirac-Coulom b Hamiltonian

In this section we arrive at the main goal of our study, namely relativistic molecular
calculations. Ideally we would like a Lorentz invariant description of molecular systems,
but from the discussionin the previous sections, it is clear that such a description can
only be approximate. Let us briey review the approximations involved.

First, the Born-Oppenheimerapproximation is inherertly incompatible with the the-
ory of special relativity sinceit singlesout a preferred referenceframe, namely the frame
in which nuclei can be treated as stationary sourcesof external elds. Relativistic correc-
tions to the nuclear motion are, howewver, expectedto be small [150. The advantage of
the Born-Oppenheimerapproximation is that it reducesthe complexity of the molecular
description and allows us to focus our attention on the electronic degreesof freedom. The
eigervalues of the electronic Hamiltonian de ned by the Born-Oppenheimerapproxima-
tion are assumedto vary smoothly asa function of nuclear coordinates. This leadsto the
concept of molecular potential energy surfaces.

Second, we have neglected all hyper ne e ects, that is we have neglected nuclear
spins. As discussedin section 1.7, this leadsto a time reversal symmetric Hamiltonian.
The hyper ne e ects alsoinclude e ects of a possiblenuclear electric quadrupole momert.
We can model this, for example by inclusion of Gaussiand functions in a nite nucleus
model.

Third, the description of even a single electron in the molecular eld leadsto a many-
body problem due to the possiblecreation of virtual electron-positron pairs. The proper
treatment of the problem canonly be obtained within the framework of QED, which allows
the number of particles in the systemto vary. We avoid working with the full mathematical
machinery of QED by invoking the no-pair approximation, that is we neglect all pair
creations. This meansthat we stay within the framework of Dirac's hole theory with the
Dirac seaof negative energy electrons at all times completely lled. It corresponds to
working with classical elds and implies neglect of QED e ects, sud as self energy and
vacuum polarization, which represen the interaction of the electron with the zero-point
uctuations of the quantized electromagneticand Dirac elds, respectively [87].

Fourth, the electron-electroninteraction can be handled correctly only to order (Z )?
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if we want to avoid ! -dependert terms. Note that this approximation is closely tied
to the no-pair approximation. If we allow virtual pair creation, we must take into ac-
count electron-positron interaction in terms of virtual photon exchange, and this leadsto
non-negligible ! -terms of order 2mc. The level of accuracy obtained with the truncated
electron-electroninteraction is, however, expectedto be su cien t for all relevant chemical
properties. In fact, for the determination of molecular potential energy surfaces,experi-
enceso far [148 31] indicate that the Coulomb interaction alone appearsto provide an
adequatedescription.

We therefore choosethe Dir ac-CoulombHamiltonian asthe starting point for relativis-
tic molecular calculations, but may considerinclusion of the Gaunt-term for the study of
properties that depend on the electron density near the nuclei, or when we want very
accurate spin-orbit splittings. The Dirac-Coulomb Hamiltonian for a molecular system of
n electronsin the eld of N nuclei hasthe form

xo xXo
Hoc=  fow(@)+  °°°™Gj)+ O n (2.30)
i=1 i<j

The rst term is a sumover one-electronDirac operatorsin the molecular eld (seesection
1.7)

fiov = Mc?+c( p)+ Ve n (2.31)

The secondterm describes the electron-electron interaction in terms of the instanta-
neous Coulomb interaction. Even though this operator has the same operator form as
the electron-electroninteraction in non-relativistic theory, its physical content is di erent
sinceit includes spin-own orbit interactions and Darwin-type corrections to the Coulomb
interaction, asseenin section2.1. The last term is the Coulomb interaction of nuclei.

X z,z
\/7NN= =)

- (2.32)

1<J

The Dirac-Coulomb Hamiltonian is an intuitiv e extension of the non-relativistic elec-
tronic Hamiltonian , but the validity of Hpc and the resulting Dirac-Coulomb equation

Hpe =E (2.33)

has beensurrounded by considerablecontroversy. We shall return to this in section2.2.6.
Let us rst note, however, that the inclusion of the electron-electroninteraction enforces
a fth approximation in our description of molecular systems, since the Dirac-Coulomb
equation represens a many-body problem and has no analytical solutions. From a math-
ematician's point of view the Dirac-Coulomb equation is nightmarish, sinceit constitutes
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a set of multivariable coupled rst order dierential equations with one singularity for
ewvery pair of particles in the system. Yet we can provide approximate solutions to it of
high accuracy The key to succesdies in the use of physical-chemical understanding in
the construction of approximate solutions.

2.2.2 The variational metho d

Approximate solutions to the Dirac-Coulomb equation can be obtained by perturbation
theory or by the variational method. We shall considerthe latter method. The basicidea
of the variational method is to introduce a trial function furnished with parametersthat
can be varied soasto obtain the best possibleapproximate solution within the parameter
space. The parametrization of the trial function leadsto a parametrization of its energy
de ned asthe expectation value of the Dirac-Coulomb Hamiltonian. Approximations to
the exact eigenfunctionsof the Hamiltonian are found as stationary valuesof the energy
in the parameter space[151]. Note that if the variational parametersare introducedin a
non-linear manner, the reciprocal relation doesnot hold true, sothat a stationary value
of the energymay correspond to a physically unacceptablesolution of the Dirac-Coulomb
equation[152. Let usconsiderthe generalform of the trial function in molecular electronic
structure theory.

The basic building blocks for approximative wave functions are molecular orbitals
(MOs) and electronic con gurations. They canbe introducedasfollows: If weturn o the
electron-electroninteraction, the electronic Hamiltonian reduceto a sum of one-electron
Dirac operators, and the wave function may bewritten asa Hartree product of one-electron
molecular 4-spinors

¥
= i(ri) (2.34)
i=1
The spinors are chosenfrom the completesetf ;g of orthonormal solutions to the corre-
sponding Dirac equation in the molecular eld. We shall refer to any set of one-electron
functions as our 1-particle basis and denote the individual one-electronfunctions molec-
ular orbitals (MO). Physically Eq.(2.34) is, howewer, not an acceptable many-electron
wave function, since it does not obey the Pauli-principle, which states that the many-
electron wave function should change sign under the permutation of any pair of electrons
(fermions). We can remedy the situation by antisymmetrizing the wave function, for
example by writing it asa Slater-determinant

(1) 201 W@
1 12 202 0 (@)
= p— . . L

ST 239
i(n)  2(n) it a(n)
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of orthonormal molecular orbitals
hij ji= g (2.36)

The Slater-determinart represerts a particular electronic con guration, namely the set of
molecular orbitals appearing in the determinant. When the electron-electroninteraction
is turned on, it is no longer possibleto separatethe electronic degreesof freedom, and
the exact electronic wave function can no longer be expressedn terms of a single Slater-
determinant. It can, however, be expandedin all possibleSlater-determinants that can be
generatedfrom the complete 1-particle basis:

= G (2.37)

The exact solution is thereby de ned in terms of complete 1- and n-particle bases,where
the setf ;g of Slater-determinarts in Eq.(2.37) constitute the n-particle basis. We may
therefore seekapproximate solutions of the Dirac-Coulomb equation in the spaceof trun-
cated 1 and n-particle bases. The seard for stationary energiesthen corresponds to
separaterotations within the 1-particle basisand within the n-particle basis.

The simplest variational approad is to (in the closed-shellcase)choosea single Slater
determinant Eq.(2.35) asthe trial function. This forms the basisfor the Hartree-Fock (HF)
method in non-relativistic theory and the Dirac-Fock (DF) method in relativistic theory.
Theseare independert particle modelsthat view the electron as moving independertly in
the eld of the nuclei and the average eld of the other electrons. The independert particle
model usually provides an adequatedescription of molecular structure at the equilibrium
geometry but fails in situations where degeneraciesor near-degeneracieof con gura-
tions occur. Near-degeneraciegypically arise in bond breaking and bond formation, in
open-shelland excited states. In relativistic molecules,additional near-degeneraciesnay
be introduced by the ne structure of the spin-orbit splitting. Sucd systemsrequire a
multicon gurational approad. The most compact and exible description is provided
by the Multi-Con gurational Self-Consisten Field (MCSCF) method, which allows both
con gurational and orbital parametersto vary.

At this point, it will be corveniert to summarizethe papersincluded in the thesisin
order to avoid overlap in the preseriation.
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2.2.3 Summary of papers

PAPER I:

T. Saue,T.Helgaker, K. Fgri and O.Gropen:
Principles of direct 4-comp onent relativistic = SCF:
Application to dihydrides of group 16
Manuscript.

In this paper we preseri the theory of direct 4-componert SCF calculations basedon a
qguaternion formulation of the Dirac-Fock equations. In the closed-shellDirac-Fock model,
bound electronic states of the Dirac-Coulomb Hamiltonian Eq.(2.30) are approximated
by a trial function in the form of a single Slater-determinart Eq.(2.35). In the nite
basisapproximation we expand eadc componert of the molecular 4-spinorsin a real (AO)
basis We seekstationary values of the total energy under the constraint of orthonormal
molecular orbitals. As in the non-relativistic theory, this leadsto a pseudeigervalue
equation in terms of the expansioncoe cien ts c. We proceedby showing that due to
time reversal symmetry we may reduce the Dirac-Fock equationsto a quaternion form
Eq.(1.101)
i h [ h i
QFQc= F +F c ¢ ="0s¢ ¢ ="9s% (2.38)

This reducesthe operation count and memory requiremert for the construction of the
Fock matrix by a factor two. The quaternion formalism furthermore brings the two-
electron Fock matrix onto a form that is readily incorporated into existing software for
non-relativistic calculations. By a quaternion diagonalization of the Fock matrix we obtain
well-de ned Kramers partners, which allows e cient use of time reversal symmetry in
post-DF applications.

The quaternion Dirac-Fock equationsare solved iterativ ely by the direct SCF method,
in which two-electronintegrals are regeneratedin eat SCF iteration. This eliminates the
frequent problemswith disk storageand I/O load in the standard Dirac-Fock approadc and
makes DF-calculations on workstations feasible. Integral batches are prescreenedbased
on the di erential density matrix approad. The integral presecreenings supplemened
by separate screeningof Coulomb and excange contributions to the Fock matrix. The
SCF cornvergenceis acceleratedby the implementation of the DIIS method.

We have applied the 4-componert direct SCF method to the dihydrides of tellurium,
polonium and eka-polonium (elemert 116). We nd the expected bond shortening due
to relativity in H,Te and H,Po. In the dihydride of elemert 116 we obsene, however, a
dramatic bond expansiondue to the extreme spin-orbit splitting of the 7p orbital in the
eka-polonium atom. This spin-orbit e ect is further analyzedin paper V.
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PAPER I1:

T. Saueand H.J.Aa. Jensen:

Quaternion symmetry in relativistic molecular calculations:
I. The Dirac-F ock metho d
Submitted to J. Chem. Phys.

In this paper we considerthe useof the full symmetry group of the Dirac-Coulomb Hamil-
tonian to reducethe computational e ort in the Dirac-Fock method. The full symmetry
group consists of all operators, unitary or antiunitary , that comnute with the Dirac-
Coulomb Hamiltonian. In practice, we obtain the full symmetry group as the direct
product of the time reversal operator and the molecular point group. Due to the presence
of antiunitary operators we can no longer form true matrix represettations of the group.
It is, howewer, still possibleto establish a system of matrices, a corepresetation that can
be broken down to irreducible forms. We denote the irreducible forms ircops.

We limit spatial symmetry to Do, and subgroups,which we collectively denote binary
groups, sincethey constitute the set of all single point groups with no elemers of order
higher than two. The binary groups can be classi ed as quaternion, complex and real
basedon the distribution of Kramers partners among the fermion irreps of the molecular
double point group:

1. Quaternion groups: C1, C;
2. Complex groups: Cg, C,, Cyp
3. Real groups: Cyy, D2, Doy

In the caseof real (complex) groups the Fock matrix in a Kramers restricted MO-basis
automatically reduce to a real (complex) matrix. It is, howewer, the construction of
the Fock matrix in AO-basis that constitute the time-consuming step in a Dirac-Fock
calculation. We shaw that by a simple quaternion transformation of the real basis, it
is possibleto obtain the samematrix reduction in the AO-basisas well. The symmetry
scheme amounts to a simple scheme of phaseinsertion that require virtually no extra
computational e ort, but leadsto considerablecomputational gains, as is demonstrated
by a numerical example.
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PAPER II1:

H.J.Aa.Jensen,K.G.Dyall, T.Saue and K.F gri:
Relativistic ~ 4-comp onent Multi-Con gurational Self-Consisten t Field
Theory for Molecules: Formalism
Accepted for publication in J.Chem.Phys.

In this paper we outline the most general multi-con gurational approad to relativis-
tic molecular calculations, namely the multi-con gurational self-consisten eld (MCSCF)
method in which both con gurational and orbital parametersare allowed to vary. We em-
ploy the secondquartization formalism wherely the Dirac-Coulomb Hamiltonian Eq.(2.30)
is expressedby

X D E 1 X D E
Hoc= phoyv g Pa+ 5 pa g™ rs p'risq (2.39)
Pq pars

where p¥ and p are creation and annihilation operators for 4-spinor p. Time reversal
symmetry is enforced by transformation to Kramers restricted basis. This leadsto the
introduction of Kramers single X ,; and double qu;;rs replacemen operators.

The parametrized Kramers restricted MCSCF wave function hasthe form

IMC(; Ji=exp( Mji (2.40)

whereexp( ”) is an exponertial parametrization of orbital rotations and where the con-
gurational variational parameters describe a correction vector orthogonal to the current
con guration expansion.

MCSCF methods require secondorder optimization methods for cortrollable cornver-
gence. This implies knowledge of the Hessian(secondderivative) matrix (or approxima-
tions to it). Key ingrediernts in the formalism that make large con guration expansions
feasibleare:

1. The unitary parametrization exp( ”) of the orbital optimization ensuresthe or-
thonormality of molecular orbitals, so that unconstrained optimization techniques
can be used.

2. The Hessianmatrix times a vector is calculated directly by iterativ e techniques so
that the individual elemens of the matrix neednot be known.

3. The restricted step secondorder optimization techniquesis a robust technique for
sharp and well-cortrollable cornvergencein relatively few iterations.
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A major dierence with the corresponding non-relativistic method is the replacemen
of the non-relativistic minimization principle with a minimax principle for ground state
optimization.
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PAPER IV:

L.Visscher, T.Saue, W.C.Nieuwpoort, K.F gri and O.Gropen:
The electronic structure of the PtH molecule:
Fully relativistic con guration interaction calculations
of the ground and excited states
J.Chem.Phys. 99 (1993) 6704{6715

In this paper weinvestigatethe lower v e statesof the the open-shellmoleculeplatinum
hydride by 4-componert con guration interaction (Cl) calculations. We have used the
MOLFDIR [22] padkage for relativistic molecular calculations. The CI program is based
on the restricted active space(RAS) formalism. The desiredroots of the ClI Hamiltonian
matrix are found by iterativ e techniques.

The characteristics of the v e lower states are largely dominated by the spin-orbit
splitting of the 5d orbital in the platinum atom, which is of the order 10 000 cm 1.
Thus we nd three lower states arising from the splitting of a 5d5_,5d2_, %:2 electronic
con guration in the molecular eld and two upper states arising from the 5d3_,5d_, 2.,
con guration. The bondingisto alarge extent a (s{s) bond, but with somecontribution
from the platinum 5d orbitals. The e ect of the Gaunt term was investigated at the
SCF level by including it perturbativ ely, and was found to be negligible for spectroscopic
properties of PtH. The main correlation e ects stem from the angular correlation of the 5d
orbitals and lead to bond shortageson the order 4 pm and an increasein the disscciation
energy of about 0.5 eV. The high stability of the Pt-H bond can be explained by the
relativistic stabilization of the 6s orbital.
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PAPER V:

T.Saue,K.F gri and O.Gropen:
Relativistic e ects on the bonding of heavy and superheavy hydrogen halides
Submitted to Phys.Rev.Lett.

In this paper we have investigated bonding in heavy and superheary hydrogen halides
by direct 4-component SCF calculations using the DIRAC code. We nd a relativistic
bond contraction of 0.6 pm in hydrogen iodide. In hydrogen astatide there is, howewer,
a slight bond expansionof 0.3 pm, and in the hydride of eka-atstatine (elemert 117) we
nd a huge bond expansionof 12.9 pm.

We have analyzed the bonding in the three moleculesby projecting the molecular
orbitals down onto the vectors of the halide ions. It then becomesclear that the huge
bond expansionobsened for the hydride of eka-astatine is due to the extreme spin-orbit
splitting of the atomic 7p orbital. The bonding in the corresponding hydride is thereby
dominated by the radially di use 7ps;-, orbital.
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2.2.4 The small component density

The small componerts are denoted "small" becausethey tend towards zero for electronic
solutions in the non-relativistic limit ¢! 1 , asdiscussedin section 1.8. In this section
I consider the smallnessof the small componerts for the nite speedof light. | have
calculated the small componert density for the elements Z = 1to Z = 103 using the
numerical 4-componert atomic code GRASP [117]. The results are preseried in Tab.2.2.4
and graphically in Fig.2.1. It is seenthat the small componerts cortribute an electrononly
for the heaviest elemen Z = 103in the series. Also, we note from Fig.2.1 that there is no
sign of periodic structure in the small componert density as a function of atomic number.
Rather we seea smooth curvethat isreadily tted by alow-order polynomial of the atomic
number. This indicates that the small componert density is largely located to the nuclear
region, whereit experiencesthe almost unscreenedhuclear charge. | have investigatedthis
further by plotting the small componernt density for the radon atom Z = 86 in Fig.2.2.
It shaws that the small componert density is approximately limited to a region within
0.2 bohrs from the nucleus. For comparison, the radial expectation values of the atomic
spinorswith n = 2 are found in the region 0.1 { 0.2 bohrs. In Tab.2.2.4the accurnulation
of the small componert density is listed for the radon atom. It shows that the outer shell
(n = 6) of the radon atom accourts for only 0.13 % of the total small componernt density
of 0.62805electrons.

The small componert density is seento be highly localized and thereby atomic in na-
ture, sothat we do not expect the appreciable changesin the small componert density
when the atom enters a molecule. This suggeststhat the interaction of small componert
densitiesat di erent atomic certers may be modelled by Coulombic repulsion. Visscher
[153 found that the neglect of SSintegrals in a relativistic calculation on At, using the
4-componert version of coupled-cluster singlesand doubleswith perturbativ e treatment
of triples CCSD(T) [32] led to an error in the bond length of 10.8 pm comparedto a cal-
culation with all integrals included. He was, however, able to correct this error completely
by represerting the cortribution from the SSintegrals by a Coulombic interaction of point
charges Eq.2.32 using the small componert density of the astatine atom. For hydrides
of heavy atoms, the neglect of SSintegrals appearsto have negligible in uence on bond
lengths [154, 155, but this is due to the fact that the small componernt density for the
hydrogen atom is for all purposesequal to zero, so that there is no Coulombic repulsion
from the SSintegrals.
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Table 2.1: Total small componert density for all elemers from Z = 1to Z = 103. The numbers

marked with an asterisk have beenobtained by interpolation.

O©CoOo~NOOULh, WNPE

0:0000
0:0001
0:0002
0:0004
0:0007
0:0010
0:0014
0:0020
0:0026
0:0034
0:0043
0:0053
0:0065
0:0077
0:0091
0:0106
0:0123
0:0141
0:0160
0:0181
0:0203

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo

0:0227
0:0252
0:0279
0:0308
0:0339
0:0371
0:0405
0:0440
0:0478
0:0517
0:0558
0:0602
0:0647
0:0694
0:0743
0:0793
0:0846
0:0901
0:0958
0:1017
0:1078

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Tc
Ru
Pd
Pd
Ag
Cd
In
Sn
Sb
Te
|
Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu

0:1141
0:1206
0:1273
0:1343
0:1415
0:1489
0:1566
0:1644
0:1725
0:1809
0:1895
0:1983
0:2073
0:2166
0:2261
0:2359
0:2459
0:2563
0:2668
0:2777
0:2888

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Gd
Th
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
TI
Pb
Bi
Po

0:3003
0:3118
0:3238
0:3360
0:3485
0:3614
0:3746
0:3879
0:4017
0:4157
0:4301
0:4447
0:4597
0:4750
0:4907
0:5067
0:5230
0:5396
0:5566
0:5739
0:5916

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

At

Rn
Fr

Ra
Ac
Th
Pa

Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr

0:6097
0:6281
0:6468
0:6659
0:6854
0:7053
0:7256
0:7464
0:7675
0:7888
0:8107
0:8332
0:8560
0:8790
0:9027
0:9268
0:9514
0:9765
1:0020
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Table 2.2: Accumulation of small componert density in the radon atom.

Individual cortributions | Accumulated density
1s-, 11089 21789  ( 34.69%)
251 12537 10 1 26864  ( 42.77%)
2p1=2 12544 10 ! 31952  ( 50.87%)
2p3=> 12206 10 ! 40777 (64.93%)
351, :8629 10 2 42503  ( 67.67%)
3p1=2 :8564 10 2 44216 ( 70.40%)
3ps= 17592 10 2 47253  (75.24%)
3d3-» 17449 10 2 50231  ( 79.98%)
3ds-, 17191 10 2 54546  ( 86.85%)
4s,, :3011 10 2 55148  ( 87.81%)
4p1- 12913 10 2 55731  ( 88.74%)
4ps-, 12568 10 2 56758  ( 90.37%)
4ds-, 12355 10 2 57700  ( 91.87%)
4ds_, 12261 10 2 59057  ( 94.03%)
Afs_y 11897 10 2 60195  ( 95.84%)
4f;_, 11858 10 2 61682  ( 98.21%)
551, :8433 10 3 61850  ( 98.48%)
5p1=2 17607 10 3 62002  ( 98.72%)
5ps= :6503 10 3 62262  ( 99.14%)
5d3-, 14733 10 3 .62452 (99.44%)
5ds-, 14456 10 3 62719  ( 99.86%)
65—, 11531 10 3 62750  (99.91%)
6p1- 11118 10 3 62772 (99.95%)
6P3=2 :8238 10 4 .62805  (100.00%)
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Figure 2.1: The total small componert density as a function of atomic number.
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2.2.5 "Unph ysical" solutions

In paper | we have discussedbasis sets in relativistic molecular calculations. Due to
their mutual coupling Eq.1.130,the large and small componerts have to be expandedin
separatebasissets. It is customaryto relatethe large - andsmall S basissetsby
the kinetic balance condition [26, 27]

S _ ( p) L (2.41)

which represerts the non-relativistic limit of the exact coupling. In scalar basis sets,
the kinetic balance prescription in generalleadsto a small componernt basis set that is
about twice the size of the corresponding large componert basis set. Charge conjugation
symmetry (section 1.6) leadsto a one-to-onematching of electronicand positronic solutions
of the free particle Dirac equation. Obviously sud a matching is not possiblein a nite

basisapproximation to the free particle equationif the large and small componen basesare
of di erent sizes. Accordingly, the nite basissolutionsto the free particle Dirac equation
will cortain positronic solutions with no electronic courterpart. From charge conjugation
symmetry it follows that they must have eigervalues of exactly 2mc? ( = 3755775
Hartrees) in the non-relativistic energy scale. They have no cortribution from the large
componerts and have therefore beencharacterized as unphysical. In this sectionwe show
that the "unphysical" solutions have a very physical behaviour which shedslight on the
physics of positrons and on the Dirac-Fock method itself. We shall furthermore show how
they can be deleted from the molecular orbital (MO) spaceby a simple method to obtain
a one-to-onematching of basis sets.

The "unphysical" solutions have only rest mass and no kinetic energy From the
uncertainity principle they must therefore be delocalized over all space,to the extent
that this is possiblein the nite basisapproximation. Consider now the behaviour of the
"unphysical" solutions in the presenceof an atom. Due to their extreme delocalization,
the "unphysical" solutions seeno atomic structure, only a point in spacewith charge
equal to the total charge of the atom. A positive charge is repulsive and will therefore
only introduce a downward shift in the energy of the positron. A negative charge will be
attractiv e and introduce bound positronic states.

I have explored this picture by a seriesof nite basiscalculations. First | solved the
Dirac equation for hydrogenlike atoms of variable nuclear chargesin a large uncontracted
Cartesian Gaussian basis. The large component basis (22s17p14d6f consisted of 217
functions, and the small componert basis (17s36p23d14f6g),generated by unrestricted
kinetic balance (see paper 1), consisted of 493 functions. In Fig.2.3 | have plotted the
eigervalue of the upper positronic solution as a function of nuclear charge. A perfect
linear t is obsened, with an intercept at Z = 0 at approximately 2mc?. The result is
therefore in complete agreemen with the picture outlined above.
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Figure 2.3: The orbital energy of the upper positronic nite basissolution to the Dirac equation
for hydrogen-like atoms plotted as a function of nuclear charge Z.
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Figure 2.4: The orbital energy of the upper positronic nite basis Dirac-Fock solutions for the
calsiumatom wherethe total chargeof the systemis varied by changingthe number of the electrons.
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Figure 2.5: The orbital energy of the upper positronic nite basis Dirac-Fock solutions for 10-
electron systemswhere the total charge of the system is varied by varying the nuclear charge
Z
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Figure 2.6: The orbital energy of the upper positronic nite basis Dirac-Fock solutions for the
neon atom where the total charge of the systemis varied by changing the number of electrons.
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In order to test the sensitivity of the "unphysical" positronic eigervaluesto atomic
structure, | performedthree seriesof Dirac-Fock calculationsin an uncortracted Cartesian
Gaussianbasis. The large componert basis(16s11p)consistedof 49 functions and the small
componert basis(11s16pl1d),generatedby unrestricted kinetic balance,consistedof 114
functions. The rst seriesof calculations were performed on the calsium-atom (Z = 20)
with variable electron occupation soasto vary the total charge of the system. The upper
positronic eigervalue is plotted as a function of total chargein Fig.2.4. Again we obsene
alinear t, which clearly demonstratesthat the delocalized positronic solution e ectiv ely
seesthe calcium atom as a single point charge.

An important point regarding the Dirac-Fock (and Hartree-Fock) method is seenfrom
Fig.2.4. The total charge of the systemis the sum of the nuclear charge and the chargesof
the electronsin the system. A one-electroncalcium atom accordingly has a total charge
of +19. We solwe this system by diagonalising the matrix represertation of the one-
electron Dirac Hamiltonian in the presenceof the external eld represerted by a nucleus
of Z = 20. It turns out, howewer, that the upper positronic solution has an eigervalue
that from the linear t in Fig.2.4 correspond to an e ectiv e charge of +20 and not +19.
We can understand how this comesabout, sincethe one-electronDirac Hamiltonian does
not contain any potential term stemming from a single electron. From the point of view of
the Dirac-Fock method, it represens a zero-electronsystem. In the Dirac-Fock equations
for an n-electron system, the occupied Dirac-Fock orbitals describe electrons moving in
the average eld of the n 1 other electrons. On the other hand, the virtual orbitals,
electronic or positronic, experiencethe averagepotential of all n electrons®. The question
of how to obtain the positronic solutions to the systemcorresponding to total charge +19
is food for thoughts.

In order to further test the insensitivity of the "unphysical" solutions to the atomic
structure, | xed the number of electronsin the systemto ten and then varied the nuclear
charge. The upper positronic eigervalue is plotted asa function of total chargein Fig.2.5.
We obsene a perfectlinear t, which con rms the physical picture outline above. Finally, |
have consideredthe behaviour of the "unphysical" solutionsin the presenceof an attractiv e
potential. | performed a seriesof Dirac-Fock calculations on the neon atom, but with
variable electron occupation, so as to vary the total charge of the system. The upper
positronic eigervalue is plotted as a function of total charge in Fig.2.6. In the part of
the plot corresponding to positive total charge we seethe samelinear t as before. For
negative charges, however, a non-linear deviation is obsened. It correspondsto weakly
bound positrons with energieslarger than ~ 2mc?.

We can conclude that the "unphysical" positron solutions have a very physical be-

3This has the well-known consequencethat the lower virtual electronic Dirac-Fock orbitals are rather
di use and not particularly well suited for correlation[156, 157]. A correlated method basedon a truncated
one-particle basis should therefore be performed using natural orbitals [158] or modi ed virtual orbitals
[159].
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haviour in terms of delocalized positrons. We also seethat the appearanceof positronic
solutionswith energiesabove 2mc? in calculations on systemswith total negative charge,
doesnot necessarilyindicate a basisset failure, but is a consequenc®f the positive charge
of the positron.

The "unphysical" solutions, by their nature, do not perturb the electronic solutions,
but they re ect a redundancy in the small componert basis. They can be deleted from
the molecular orbital spaceby the following simple method:

The Dirac-Fock equations are solved iteratively. In eat SCF iteration we solve the
generaleigervalue problem

Fc = "Sc (2.42)

The overlap matrix S appears since we are working within the non-orthogonal atomic
orbital (AO) basis. The general eigervalue problem is solved by rst transforming to
orthonormal (MO) basis. We may do so by a canonical orthonormalization V [16Q con-
structed from eigervaluess; and eigervectors O ; of the overlap matrix

V = Os ¥ 0'SO=s, sj=s5 j (2.43)
The eigervalue problem is then reducedto a standard eigervalue problem
F&="c%  FP°=VYFv;c®=vV ‘¢ (2.44)

solved by a complex or quaternion diagonalization, depending in the formalism used. The
MO-coe cien ts are recovered by the badtransformation

c=Vc? (2.45)

In the transformation to MO-basis we could of coursehave usedany transformation that
orthonormalizes the basis, for example MO-coe cien ts from a given SCF iteration. The
advantage of the canonical orthonormalization is that it allows a straightforward deletion
of numerical dependenciedntro ducedby large basisexpansions.We simply deletecolumns
of the MO-transformation matrix V Eq.(2.43) corresponding to eigervaluesof the overlap
matrix below a selectedtreshold. From this we seethat the MO-basis neednot be of the
samesize as the AO-basis. We can use the MO-transformation to project the AO-basis
down onto a MO-basis spanning a smaller space. This reducesthe number of variational
parametersand might thereby improve corvergence.

The deletion of "unphysical" solutions can be embeddedin the MO-transformation.
We rst solwe the free-particle Dirac equation in the current basis. This amourts to
solving an eigervalue problem of the form Eq.(2.42), where F is the matrix represertation
of the free-particle Hamiltonian in AO-basis. At this point we can use the canonical
orthonormalization to remove linear dependenciesfrom the MO-space. The "unphysical”
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positronic solutions are readily identi ed by their eigervalues 2mc? and are discarded.
The remaining set of MO-coe cien ts is then used as MO-transformation matrix in all
subsequeh SCF iterations, thereby ensuringthe removal of both linear dependenciesand
"unphysical" solutions. The method shawsthat projection operators are straightforwardly
emebeddedin the MO-transformation. We will exploit this in the next section.

2.2.6 Variational stabilit y of the Dirac-Coulom b Hamiltonian

We now return to the cortroversy surrounding the validity of the Dirac-Coulomb Hamil-
tonian. The discussionwas initiated by Brown and Ravenhall [161]. They considered
a system of two non-interacting bound electrons. If the electron-electron interaction is
turned on as a perturbation, there will be an in nite number of degeneratestates con-
sisting of one electron from the positive continuum and one positron from the negative
continuum. Thus the original bound electronic con guration will ewlve into a completely
delocalized two-particle state. This is referred to asthe "continuum dissolution" or the
"Brown-Ravenhall disease". The solution proposedby Brown and Ravenhall wasto re-
strict the Hamiltonian to positive energystatesby surrounding it with projection operators
and thereby neglect all pair creation processes.This solution was further expounded by
Sudher [133 134, 135 28]. There are, howeer, seweral possible choicesof projection op-
erators. They may be de ned in terms of positive energy solutions to the free particle
Dirac equation; this corresponds to the ‘free' picture of QED. Alternativ ely, one can de-
ne the projection operators in terms of positive energy solutions of the external eld
Dirac equation (the "Furry" picture [136). In chemical applications, the external eld
would be the molecular eld de ned by the nuclei. A third solution was proposed by
Mittleman [162, namely to construct the projection operator iterativ ely from the positive
energy solutions of the Dirac-Fock equation. This has beendenoted the "fuzzy" picture
[28]. These proposalshave beenreviewed by Kutzelnigg [163.

The cortroversy and the methodological di culties surrounding the Dirac-Coulomb
Hamiltonian are largely resolved today, as manifested by the routine application of the
Dirac-Coulomb Hamiltonian in relativistic molecular calculations. We rst note that the
no-pair approximation can only be made with referenceto some 1-particle basis, which
de nes what is electrons and what is positrons. The variational methods of relativistic
molecular calculations at some stage involve the construction of a one-particle basis by
the solution of an e ectiv e one-electronDirac equation, albeit with a non-local potential.
Electronic solutions appear as excited statesin the spectrum of the e ectiv e one-electron
operator. As pointed out by Talman [164, 169, they are found by application of a min-
imax principle, where the energy is minimized with respect to rotations into the virtual
electron space,and maximized with respect to rotations into the the positron space. With
a balanced basis, the electronic and positronic solutions are well separated and readily
identi able. Once electrons and positrons have beende ned, con gurational expansions
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canbe limited to electronic con gurations, in accordancewith the no-pair approximation.

In the Dirac-Fock method, the electronic solutions are straightforwardly obtained by
vector selection. This corresponds to the use of projection operators within the "fuzzy"
picture. The projection operators need not, however, be de ned explicitly. The perfor-
manceof projection operators de ned within the "free" and "Furry" picture canbe tested
within the Dirac-Fock model using the method for embedding projection operators in
the MO-transformation, outlined in the previous section. "Free" projection operators are
obtained by rst solving the free-particle Dirac equation in the AO-basis. We then dis-
card the positronic solutions and usethe remaining vectors set as our MO-transformation
matrix in all subsequeh SCF iterations. The "Furry" projection operators are obtained
in analogous manner, but starting from the molecular eld Dirac equation. The per-
formance of various projection operators has been studied by calculations on the radon
atom (Z = 86) in an uncortracted Cartesian Gaussiandual family basis. The large com-
ponenrt basis (22s19p14d9f consisted of 253 functions, and the small componert basis
(19s22p19d14f9g),generated by the unrestricted kinetic balance condition, consisted of
474 functions. The results are preseried in Tab.2.2.6. The "free" projection operator is
seento perform poorly, which is not unexpected[166. The introduction of an external eld
leadsto a "dressing" of the free electrons and positrons. The localized bound electrons
are of a quite di erent nature than the delocalized free electrons. The "Furry" projection
operator, howewer, is seento perform rather well. We can understand this by the fact
that the small component density is localized mostly to the nuclear region, subject to the
almost unscreenednuclear charge. The introduction of the electron-electron interaction
therefore does not drastically changethe small componernt density. In Tab.2.2.6we have
also included result obtained by the method described in the previous section, where a
one-to-onematching of the large and small componernt basisis obtained by projecting out
the "unphysical" free positron solutions. Thes results are seento be equivalert to the
results obtained by the basis set extension of the atomic code GRASP [117, 96|, where a
one-to-onematching of large and small componert basisfunctions is obtained by restricted
kinetic balancede ned in terms of Gaussian2-spinors (seepaper I).

2.2.7 Direct SCF: a numerical example

In paper | we have preseried the theory of the 4-componert SCF method. A key ingrediert
in direct SCF is the screeningof cortributions to the Fock matrix to reducethe time spent
in eadr SCF iteration. In this section we illustrate the method by a numerical example.
Let us rst briey review the screeningimplemented in DIRAC.

Integrals are generatedin batches(K,L,M,N) de ned by shell indices and screeningis
basedon a threshold . In eat SCF iteration we generatea density matrix over shell
indicesto be kept in memory

DkL = max(D . ), 2K; 2L, 2]03] (2.46)
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Table 2.3: Total (Epr) and orbital energies(in Hartrees) of the radon atom from Dirac-Fock
calculations using various schemes. UKB
unrestricted kinetic balance. RKB = "unphysical" free positronic solutions projected out of the
MO-basis. VEXT = all positronic solutions of the molecular eld Dirac equation projected out of
the MO-basis. FREE = all positronic solutions of the free particle Dirac equation projected out
of the MO-basis. GRASP = results from a calculation performed with the basis set extension of
GRASP, which employs restricted kinetic balancede ned in terms of a Gaussian2-spinor basis.

the large and small component basesrelated by

UKB RK B VEXT FREE GRASP
Epr 23601879021 | 23601929261| 23601911484| 24387589625 23601930828
1s- 3641175215 3641172817 3641189420 3904888545 3641173
2S5, 668806797 668805891 668810237 707.522900 6688059
2P1=2 642279195 642295351 642284778 671753287 6422954
2P3=2 541101773 541:100868 541105285 553106216 5411008
31 166829782 166:829514 166830532 176754326 1668295
3P1=2 154879012 154883240 154880136 162755672 1548832
3ps=2 131:728395 131728144 131729117 135388427 1317281
3dz- 112562535 112563187 112563135 116264914 1125632
3ds- 107756490 107756249 107756985 110473356 107.7562
4s)-, 41:310404 41:310334 41:310574 44:266294 41:31032
4p; = 36:012965 36:014083 36:.013217 38:359034 36:01407
4p3=; 30:117674 30:117608 30:117829 31:339004 30:11759
4d3-, 21:544561 21:544774 21:544668 22671517 21:54476
4ds-, 20:435777 20:435722 20:435860 21:317706 20:43571
4fs—, 9:190776 9:190751 9:190788 9:911893 9:190735
4f;-, 8:925160 8:925127 8:925167 9:493619 8:925110
587 8:405941 8:405924 8:405975 9:317665 8:405917
5p;=2 6:405063 6:405298 6:405110 7:128608 6:405292
SPs=2 5:172874 5:172857 5:172902 5:636034 5:172849
5ds3-, 2:186505 2:186538 2:186518 2:566585 2:013540
5ds-, 2:013557 2:013546 2:013567 2:348793 2:186532
6s;-» 1:068464 1:068461 1:068470 1:393778 1:068460
6p1-2 0:536667 0:536697 0:536673 1795442 0:536698
6ps=2 0:381745 0:381742 0:381749 590526 0:381740
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and for ead integral batch we de ne

c E ( Dr?]ax 4 max(DKL;DMN)
Dmax = max Dpmay;Dmax 5 (2.47)
D Fax max(Dni;Dmi;Dnk:Dmk)

We furthermore calculate a strict upper limit to the size of two-electron integrals in the
batch by

p__
Ilkivn = max[G G G = (i ) 2K; 2L, 2M; 2N (2.48)

In DIRA C screeningis performed in two steps:

1. Presceening of integral batches
We only calculate batchesfor which

Dmax kv N (2.49)

2. Presceening of contributions
If the batch is calculated, we perform a secondseparatescreeningon Coulomb

D Gax [k LM N (2.50)

and exdhangeintegrals

Dhax [k LM N (2.51)

before feeding the integrals to the routine for the construction of the Fock matrix.
If the exchange contributions are screenedout, we calculate only the Coulomb con-
tributions to the Fock matrix, and vice versa.

We illustrate the method by an example. | have performed a 4-component direct
Dirac-Fock calculation on the diatomic interhalogen Brl at the experimertal gas phase
bond length 248.5 pm [167] in a basis of uncontracted Cartesian Gaussian dual family
basis. The basis sets are given in Tab.2.2.7. The Dirac-Fock calculation was performed
in the following manner: In the initial SCF iterations the two-electron Fock matrix is
constructed from only LL integrals. SL integrals are not intro ducedinto the SCF process
until the corvergenceon total energyis lessthan 1:0 10 # Hartrees. Likewise,SSintegrals
are not introduced until the corvergenceon total energyis lessthan 1:0 10 © Hartrees.
Screeningis basedon the dierential density approad with threshold = 1.0 10 8.
Howevwer, in a SCF iteration where a new integral classis introduced, di eren tial densities
are replacedby true densities,in order to avoid the introduction of errors, as discussedin
paper I.
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Integral batches skipped (%)

Figure 2.7: 4-componert direct SCF calculation on Brl: Percertage of integral batchesscreened
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Table 2.4: Basis sets of uncontracted Cartesian Gaussianusedin the calculation on Brl.

S refer to the large and small componerts basis sets respectively. The total number Nt of basis

functions is the sum of the number of large (N ) and small (Ns) basisset functions.

L

N, S Ns || Nt

Br || 16s14p9d | 112 || 14s16p14d9f | 236 || 348
I 20s17plld| 249 || 17s20p17d11f 289 || 426

Table 2.5: E ects of screeningin 4-componert direct SCF calculation on Brl. The CPU-time
refers to the average (over SCF iterations) absolute time(h:min:s) and the time relative to the

unscreenedcasefor processingintegrals and Fock matrix.

Integral batches screenedout (average)

Average CPU-time

First step Secondstep
Coulomb exchange
LL integrals 41.8% 1.6% 1.3% | 0:09:10 90.5%
SL integrals 51.4% 0.5% 10.9% | 1:00:25 67.2%
SSintegrals 77.4% 1.5% 8.2% | 0:58:27 29.7%
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The e ects of screeningon the iterativ e processare summarizedin Tab.2.5and visual-
izedin Figs. 2.7,2.8and 2.9. On average77.4%o0f the SS-irntegral batchesare screenedout,
so that the time spent on generating the integrals and processingtheir cortributions to
the Fock matrix is reducedby a factor of more than three, comparedto the corresponding
calculation without screening. On average, more time is in fact spernt on processingthe
SL-integrals. The e ect of screeningCoulomb contributions is small, but this is reasonable
due to the long-range behavior of the Coulomb interaction. The screeningof exchange
cortributions , on the other hand, has an appreciablee ect. The e ect is slightly larger
for SL integrals than for SSintegrals, but this is probably due to the fact that so many
batches of SS integrals are screenedout in the rst step. The "dip" in the curves at
iteration 21 and 28 in Fig2.7 gives someindication of the e ect the dierential density
approad, becausen thesetwo iterations new integral classesare introduced and the dif-
ferertial densitesreplacedby absolute densities. In iteration 35, near corvergence,there
is a reduction in the number of integral batchesthat are screenedout, but this is due to
the useof a dynamic threshold ; whenthe energycorvergencepassesdelow the threshold

, the threshold is adjusted down accordingly to increasethe precisionin the Fock matrix
construction.

Further studies on the e ect of screeningin 4-componert direct SCF are neededto
optimize the process.Also, the routine for the construction of Fock matrices is currently

somewhattoo slow.
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2.3 Concluding remarks

... after a Dir ac lecture, the sessionchairman askel the audience if they
had any questions. A person stood up and said 'l did not understand
the derivation of ...etc, etc.' Paul made no respnse, the chairman
askal, 'arert you going to answer the question?' Paul said, 'that was
a statement, not a question.'

JELANNUTTI  (1987) [2]

In this thesis cortributions to the theory of 4-componert relativistic molecular calcula-
tions have beenpreseried. The theory of the 4-componert direct SCF method has been
implemerted in the code DIRA C. The code is currently being applied to seweral molecular
calculations. We have also presened the theory of multi-con gurational self-consisten
eld (MCSCF) method. As discussedin previous sections,the need multi-con gurational
approadesis amplied in the relativistic domain due to the ne structure provided by
the spin-orbit interaction. The 4-component MCSCF method is under implemenrtation in
cooperation with K.G. Dyall and H.J.Aa.J rgensen.

The 4-componert methods provide a relativistic description of molecules. The opera-
tors have a simple structure, and are well-de ned for a wide range of molecular properties.
Work is therefore in progressin the dewvelopmert of 4-componert methods for rst and
secondorder molecular properties. For properties dependert on the electron density in
the nuclear region, 4-componert methods will be relevant even for fairly light systems.

The main dicult y of the 4-componert methods lies in their computational expense.
The situation has been improved with the introduction of direct SCF methods, which
makes it possibleto perform relativistic molecular calculations on work stations. There
is, howeer, a needto reducethe large number of integrals stemming from the small com-
ponent basis. The prospects for integral approximations looks good, due to the localized
atomic nature of the small componert density. Progressin this area would open up a
wide range of chemical problems for study by 4-componert methods. For large systems
sudh investigations will bene t from the explicit calculations of molecular gradients and
the use of secondorder optimization methods. This should therefore be researt areasof
high priority.

We may concludethat the future for 4-componert methods looks bright.
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DIRA C : documentation

P rogram
for

A tomic
and

M olecular

D irect

| terativ e
R elativistic
A ll-electron
C alculations

A.1 General overview

Version 2.0. Last update: Nov 14 1995 - tsaue@kelvin.uio.no

DIRA C is a FORTRAN code for relativistic molecular calculations basedon the Dirac-
Coulomb (-Gaunt) Hamiltonian. It solvesthe the 4-componert Dirac-Fock(DF) equations
by the SelfConsistert Field (SCF) iterativ e procedureand providestools for analysisof the
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corverged wave function. DIRA C is constructed around HERMIT | a highly e cien t
code for generating one- and two-electron integrals over a basis of Cartesian Gaussian
functions. The two-electronintegrals naturally split into three classes:

LL-integrals| (LL jLL)
SL-integrals| (SSjLL)
SS-inegrals| (SSj SS)

(possibly extended by Gaunt integrals). For ead integral type two integral processing
modesare accessibleto the user

corventional mode: symmetry-adapted integrals are stored on disk
direct mode: integrals are regeneratedwheneer they are needed

In the latter mode a dierential density matrix approach may be usedto reduce the
number of integrals calculated in ead iteration. This number may be reduced further
by including SL- and/or SS-irtegrals only at an advanced stage in the SCF-iterations,
determined by corvergencecriteria or by specifying the iteration at which to include
the integrals. Convergencemay be enhancedby damping the Fock matrix or by Direct
Inversion of Iterativ e SubspaceqDI IS).

In the presen version only the large componert basis needsto be de ned, the small
componerts then being generatedby the kinetic balance prescription. Restricted kinetic
balancemay be enforcedby deleting unphysical solutions in the positron spectrum of free
electronsolutions. The nuclear chragedistribution is represeried by a Gaussianfunction to
avoid the sinuglarities intro ducedby point nuclei. Time reversalsymmetry is implemented
using quaternion algebra, whereasspatial symmetry is restricted to the binary groups, that
is Do, and subgroups.

DIRA C is an experimertal code, subject to continous change.

A.2 Recent modi cations

Nov 11 1995 Overlap selectionimplemented with keyword OVLSEL

Nov 11 1995 Keyword NOSMLidrns o the small componert nuclear at-
traction integrals and thereby the spin-orbit interaction in the
eld of the nuclei.

Nov 3 1995 File DFCYCtortaining SCF history is formatted.
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Nov 3 1995 Convergenceacceleration: By default DIIS is activated us-
ing a very large threshold (DIISTH. When DIIS can not
be used damping is activated using a default damping fac-
tor 0.25. DIIS canbeturned o usingthe keyword .NODIIS.
The DI IS threshold can be modi ed using the keyword .DI-
ISTH Damping canbeturned o usingthe keyword .NODAMP
The damping factor can be modi ed using the keyword typ

.DAMPFC.

Nov 3 1995 Restart facilities have been made more robust, see section
A7.

Oct 311995 Evenwhenan integral batch is generatedit is possibleto have

separate screeningof Coulomb and exdange cortributions.
Exchangecortributions are generally more local and easierto
screenout. This feature is activated by the keyword .CEDIFE

Oct 311995 All free positronic solutions may be projected out of the MO-
spaceusing the keyword .FREEPJ

Oct 311995 All positronic solutions of the one-electronFock matrix may
be projected out of the MO-spaceusing the keyword .VEXTPJ

A.3 Installing the program

The program can be installed on a number of di erent typesof computers. It is presen as
a seriesof master les that are processedby the UPDATEode to handle machine-speci ¢
features. The master les consistsof three categories

dir*.u DIRA C - les
*her*.u HERMIT - les
gp*.u library - les

In addition there are .cdk - les corntaining macdhine-specic features and COMMON-
blocks:

gen.cdk - generalfeatures
dirac.cdk - features pertaining speci cally to DIRA C

aba.cdk - features pertaining speci cally to HERMIT
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gpg08.cdk - features pertaining speci cally to library routines
Two shell scripts are available for installing the program:
lag - install one or more main modules: HERMIT |, DIRA C or library les

add - add a speci ¢ master le

A.4 Running the program

Two input les are neededto run DIRA C :
The basis le de nes the basisset, nuclear con guration and symmetry.
The menu le de nes the calculation.

At the start of any calculation the basis le is processedand then various modules are
activated basedon the information given in the menu le. One may therefore run a
sequenceof calculations based on the same basis le. Intermediate les are kept to a
minimum. For instance, one may rst run a DF-calculation which gives a set of MO-
coe cien ts de ning the corvergedwave function. Population analysis may be performed
in a separatecalculation and then requiresonly the le of coe cien ts in addition to the
basis le.
The basic UNIX command for running the program is

dirac.x < {menufile} > {outputfile}

The basis le must be presen as MOLECULE.INP

The various program modules have di erent memory requiremerts. Memory may be
allocated dynamically by setting an environmental variable DIRWRMhich de nes the
number of 8-byte words neededin the calculation, e.g.

setenv.  DIRWRK0000000

meansthat 30 Mw of memory are to be allocated! Default memory is speci ed by the
variable LWOR¥hich may be setin the dirac.cdk - le.
A C-shell script dhf is available for automatization of calculations:

Usage: dhf [flags] file

Flags:
-incmo . Copy DFCOERF0  work area
-utcmo : Save DFCOERom work area

11 Mw = 8,000,000bytes = 7.63 MB. 1MB = (1024)? bytes.
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-infck
-utfck
-mw mem
-rmwrk

-run name :

Copy DFFCK2o  work area

Save DFFCKZrom work area

set memory(in megawords)
remove work area after calculation
File suffix for output
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A5 Input les

Common to both the menu le and the basis le is that any line that begins with the
hashsymbol # is interpreted asa commen. This feature may be usedfor the insertion of
commerts and in the menu le to \turn o " keywords.

A51 Menule
The mernu le de nes the calculation and hasthe generalstructure

*DIRAC

< keywords >
< chapter >

< keywords >
< chapter >

< keywords >

*END OF

Each chapter hasan asterisk (*) in the initial position and generally refer to a program
module. For eath chapter a set of keywords may be speci ed, possibly with additional
argumerts. The setof chapters and keywords allows the usergreat exibilit y in de ning
the current calculation.

1. *DIRA C

(@) Job assignmen't
In this sectionthe program modulesto be called are de ned. It is recommended
to start a new set of calculations with all modulesturned o in order to chedk
the basis le processing.

TITLE title line
Arguments: Title line (max. 50 characters)
Default: DIRAC: Notitle  specified !l

INPTES input test: no job modules called
Default: INPTES= .FALSE.

.DHFCAL perform Dirac-Fock calculation
Default: DODHE .FALSE.

.DHFANA analyze Dirac-Fock wave function
Default: DOANA .FALSE.

(b) Job control
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.DIRECT - direct evaluation of two-electron integrals.
Arguments: IntegersILL,ISL,ISS
IXX = 1(on)/ O(0 ) (XX= LL,SL or S§
Default: ILL = ISL = 1SS =0

.ONESYS ignore two-electron part
Default: ONESYS .FALSE.

.NSYM number of fermion ircops (one or two).
Default: NSYM= 1

.URKBAL unrestricted kinetic balance
Default: URKBAE .FALSE.
Restricted kinetic balance. This is imposedby deleting unphysical
solutions from the free particle positronic spectrum.

.FREEPJ project out all free positronic solutions from the MO-space
Default: .FALSE.

.VEXTPJ project out all external eld positronic solutions from the MO-
space
Default: .FALSE.

.SPHTRA transformation to spherical harmonics embedded in transforma-
tion to orthonormal basis;totally symmetric cortributions deleted.
Arguments: IntegersISPHL,ISPHS ISHP = 1(on)/0(off)
Default: ISPHL= 1,ISPHS = 0. Note that with ISPHL= 1
and restricted kinetic balance, the correct transformation of the
small componerts is automatically imposed.

.CVALUE resetthe value of light
Arguments: CVAL
Default: CVAL= 137.03604DO0O

.PTNUC  usepoint nucleus
Default: The nuclearchargedistribution is represened by a Gaus-
sian function.

.TIMINT  time integral evaluation
Default: TIMINT = .FALSE.

.OVLTOL thresholds for linear dependencein large and small componerts
Arguments: Real STOL(1),STOL(2)
Default: Large: STOL(1) = 1.0D-6.
Small: STOL(2) = 1.0D-8

(c) Print levels

.PRINT generalprint level
Arguments: Integer IPRGEN
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Default: IPRGEN= 0

IPRONE print level for one-electronintegrals
Arguments: Integer IPRONE
Default: IPRONE= 0

APRTWO print level for two-electronintegrals
Arguments: Integer IPRTWO
Default: IPRTWG= 0

2. *READIN | Input module : Readand processmenu and basis les.

.PRINT generalprint level in input module
Arguments: Integer IPREAD
Default: IPREAD= 0

.MAXPRI maximum number of primitiv e functions in a given block in basis le
Arguments: Integer MAXPRI
Default: MAXPRE 15

3. *DHF CAL | Perform Dirac-Fock calculation.

(&) DHF { occupation

.NELECT for ead fermion ircop, give number of electrons
Arguments: Integers (NELEC(I),I=1,NSYM)
Default: NELEC(1)= NELEC(2)= 0

(b) Print levels

.PRINT generalprint level
Arguments: Integer IPRDHF
Default: IPRDHF= 0

(c) Trial function
A DF-calculation may beinitiated in three di erent ways:
using MO-co e cien ts from a previous calculation.
using two-electron Fock matrix from a previous calculation; this may
be thought of as starting from a corverged DHF potential
using coe cien ts obtained by diagonalization of the one-electronFock ma-
trix: the bare nucleus approac h.

Default is to start from MO-coe cien ts if the le DFCOEE preser. Otherwise
the bare nucleus approac is followed. In all three caseslinear dependencies
are removed in the Oth iteration.

.TRIVEC start SCF-iteratons from vector le
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.TRIFCK start SCF-iterations from two-electron Fock matrix from previous
calculation
(d) Convergence criteria

Three di erent criteria for corvergencemay be chosen:
the di erence in total energybetweentwo consecutiw iterations
the largest absolute di erence in the total Fock matrix betweentwo con-
secutive iterations
the largest elemen of the DIIS error vector e = [F; D] (in MO-basis).

The changein total energyis approximately the squareof the largestelement in
the error vector or the largestchangein the Fock matrix. Default is corvergence
on error vector with threshold SCFCN¥ 1.0D-6 . Alternativ ely, the iterations
will stop at the maximum number of iterations.
.MAXITR  maximum number of SCF - iterations
Arguments: Integer MAXITR
Default: MAXITR= 50
.ERGCNYV threshold for convergenceon total energy
Arguments: Real SCFCNV
.EVCCNV cornvergeon error vector
Arguments: Real SCFCNV
.FCKCNYV corvergeon largest absolute changein Fock matrix
Arguments: Real SCFCNV
(e) Convergence acceleration
It isimperative to keepthe number of SCF-iterations at a minimum. This may
be achieved by corvergenceaccelerationstemes.
Damping The simplest schemeis damping of the Fock matrix that may
remove oscillations. In iteration n + 1 the Fock matrix to be diagonalized
is:

FO= (1 ©)Fns + CFp; C damping factor (A.1)

DI IS (Direct Inversion of iterative Subspaces)may be thought of as gen-
eralized damping involving Fock matrices from many iterations. Damping
factors are obtained by solving a simple matrix equation involving the B-
matrix constructed from error vectors (approximate gradiernts).

In DIRA C DIIS takes precedenceover damping.

.DIISTH change default threshold for initiation of DIIS, basedon largest
elemen of error vector
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(f)

(9)

Arguments: Real DIISTH| convergencethreshold for initiation
of DIIS
Default: A very large number.

.MXDIIS maximum dimension of B-matrix in DIIS module
Arguments: Real MXDIIS| maximum dimension of B-matrix
Default: MXDIIS= 15

.NODIIS do NOT perform Direct Inversion of Iterativ e SubspaceqDI IS)
Default: DIIS is activated.

.DAMPFC changedefault damping factor
Arguments: Real DAMPHC damping factor
Default: DAMPFE 0.25.

.NODAMP do NOT perform damping of Fock matrix
Default: Damping is activated, but DI IS takes precedence.

State selection

Convergencecan be improved by selection of vectors based on overlap with
vectors from a previous iteration. This method mayu also be usedfor corver-
genceto some excited state. If DIRA C starts on a vector set , this vector
set forms the criterium for overlap selection, otherwise the criterium are the
vectors from the rst iteration. Vector selectionbasedon vectors generatedby
the bare nucleusapproad are not recommended.

.OVLSEL activate overlap selection
Default: No overlap selection.

Iteration speedup
The total run time may be reduced signi cantly by reducing the number of
integrals to be processedn ead iteration:

Screening on integrals: Thresholds may be set to eliminate integrals
below the threshold value. The threshold for LL-integrals is set in the
basis le, but this threshold may be adjusted for SL- and SS-irtegrals by
threshold factors:

{ Threshold for LL-integrals: THRS

{ Threshold for SL-integrals: THRS*THRFAC(1)

{ Threshold for SS-irtegrals: THRS*THRFAC(2)
Screening on densit y: In direct mode further reductions are obtained by

screeningon the density matrix aswell. This becomeseven more e ective
if oneemploys di eren tial densities , that is

D = Dn+l Dn (AZ)
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Neglect of integrals: The number of integrals to be processegnay be
reduced even further by adding SL- and SS-irtegrals only at an advanced
stage in the DHF-iterations, as determined either by the number of it-
erations or by energy corvergence. The latter takes precedenceover the
former.

.THRFAC adjust integral thresholds for SL- and SS-irtegrals.
Arguments: Reals THRFAC(1),THRFAC(2)
Default: THRFAC(1F= THRFAC(2F 1

.DNSTHR threshold for screeningon density matrix
Arguments: DNSTHR
Default: Real DNSTHR 1.0D-10

.CEDIFF separatedensity screeningof Coulomb and exchangecontributions
Default: .FALSE.

.NODSCF do not perform SCF - iterations with di erential density matrix
Default: usedierential density matrix in direct SCF.

.CNVINT set threshold for corvergencebefore adding SL- and SS-irtegrals
to SCF-iterations.
Arguments: Reals CNVINT(1}JSL),CNVINT(2}SS)
Default: Very large numbers.

ATRINT set number of iterations before adding SL- and SS-irtegrals to
SCF-iterations.
Arguments: IntegersITRINT(1) (SL),ITRINT(2)(SS)
Default: ITRINT(1) = ITRINT(2) =1

.NOSMLV turn o small componert nuclear attraction integrals; this turns
o the spin-orbit interaction from the eld of nuclei. If SL two-
electron integrals are turned o aswell, all spin-orbit interaction
is cancelled.
Default: Integrals are included.

(h) Output control

.VECPRI separatecortrol of printing of large and small componerts
Arguments: IntegersIPRVEC(1jlarge),IPRVEC2) (small).
Default: No vectors printed.

.EIGPRI  cortrol printing of electron and positron solutions
Arguments: IntegersIPREIG(1) (electron),IPREIG(2)(positron)
Default: Electronic eigervalues printed.

.SPINOR for eat fermion ircop, give number of spinorsto print.
Default: the occupied electronic solutions.
Arguments: Integers (NSPI(1),I=1,NSYM)
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.OFFSET for ead fermion ircop, o set for start addressfor vectorsto print.

4. *DHF ANA

Arguments: Integers (ISPI(I),1I=1,NSYM)
Default: 0, meaning the rst electron solution. (Positron solu-
tions may be printed by giving negative o sets).

| Analyze Dirac-Fock wave function. Mullik en population analysisis

performed in AO-basis. The analysisis basedon the concept of labels Each basis
function is labeled by its functional type and certer. The labelsare given in output.
A set of primitiv e labels may be collectedto group labels as speci ed by the user.

PRINT

.MULPOP

.NETPOP

.LABDEF

.ADDSML

.SPINOR

.OFFSET

generalprint level
Arguments: Integer IPRANA
Default: IPRANA= 0

give Mullik en grosspopulations
Default: DOMULP .FALSE.

give Mullik en grossand net/overlap populations
Default: DONETR .FALSE.

de ned labelsfor usein Mullik en population analysis
Arguments: Integer NCLAB number of labelsto de ne

DOl = 1,NCLAB
READ(LUCMD,'(A12,I5)) CLABEL(I),NGRPS
READ(LUCMD,IBUF(J),J=1,NGRPS)

DOJ = 1,NGRPS
ICLAB(IBUF()) = |
ENDDO
ENDDO

usedefault labels for small componerts
Default is to gather all small componert functions belongingto a given
certer.

for eadh fermion ircop, give number of spinorsto analyze.

Default: the occupied electronic solutions.

Arguments: Integers (NSPI(1),I=1,NSYM)

for eadh fermion ircop, o set for start addressfor vectorsto analyze.
Arguments: Integers (ISPI(I),1I=1,NSYM)

Default:0 , meaningthe rst electron solution. (Positron solutions may
be analyzed by giving negative o sets).
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A.5.2 Basisle

The basis le de nes the presen basis set, molecular geometry and the symmetry of the
system. A summary of the basis le structure is givenin Tab. A.5.2.

Card 1: INTGRU akeyword that identi es the le.
Card 2 : TITLE(1),TITLE(2) (A72/A72) Two title lines.

Card 3 : CRT,NONTYP,NSYMOP,(SYMOR(, 3), T HRS
(BN,A1,14,15,3A3,1X,D10 .2)

CRT - must besetto 'C' to indicate that Cartesian Gaussiansare to be used.
NONTY P- specify the number of atomic types
NSYMOR specify the number of generatorsof the symmetry group

SYMOP(I)- Symmetry is restricted to restricted to the binary groups, that is D,y
and subgroups, which meansthat a symmetry operation acting on the main
axes (x,y,z) will at most reversetheir direction. A group generator is there-
fore identied by a 3-character string that speci es the axesreversedunder its
operation. Examplesare given for the eight binary groupsin Tab. A.5.2.

THRS(D10.2) Threshold for LL-integrals. Separate thresholds for SL- and SS-
integrals may be speci ed in the meru le.

For eath atomic type:

Card 3.1 Q,NONT(I),QEXRBN,F10.0,I5,F20.5)
Q - nuclear charge
NONT(I) - number of symmetry independert certers

QEXRGaussianexponert for nuclear charge distribution (if zero, then default
is used).

For eadn symmetry independert center:

Card 3.1.1 NAMN(NUCIND),[CORD(J,NNDJ, J = 1,3] (BN,A4,3F20.0)
NAMN name of nuclear certer
CORD(J)- x-,y-and z-coordinate of nuclear certer

Card 3.2 BSET,IQM(I),[JCO(J,1),J=1, IQM()] (BN,A5,1215)

BSET- set equal to LARGHo indicate that large componert basisis de ned
explicitly

IQM - highest angular quantum number L plus one, e.g. s(1),p(2) ....

JCO - number of blocks for eat L-value
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For ead block read exponerts and coe cien ts:
In the presert versiononly uncortracted basissetsare used. The large compo-
nent basisis given explicitly, whereasthe small componert basisis generated
by the kinetic balanceprescription. If cortracted basissetsare to be used,the
two componerts must eat be speci ed explicitly. This will be possiblein the
next versionof DIRA C .
Card 3.2.1 FRMT,NUC,NRC,ISGHBN,A,14,215)
FRMT format for reading of exponerts and coe cien ts
H - high precision. For eat exponert the rst line is read in for-
mat (4F20.8) and addtional lines cortaining only coe cien ts
are read in format(20X,3F20.8) .
F - free format
(blank) - default precision. For eac exponert the rst line is readin
format (8F10.4) and addtional lines cortaining only coe cien ts
are read in format(10X,7F10.4) .
NUC - number of primitv e exponerts
NRC - number of contracted functions (set equalto zero for uncontracted
basis)
ISGEN- speci cation of how to generate small componert functions by
kinetic balance:
ISGEN= 0: No small componert functions generated
ISGEN= 1. Small componert functions generated upwards, e.qg.

p! d
ISGEN= 2: Small componert functions generateddownwards, e.g.
p! s

ISGEN= 3: Small componert functions generated both upwards
and downwards, e.g. p! s;d
Card 3.2.2 [ALPHA(K),[CPRIM(K,L),L=1,NRQ,K =1,NUC]
Read exponerts and coe cien ts. Seecard 3.2.1.

Card 4 FINISH- keyword to indicate end of le
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Table A.1: Example de nitions of the binary groups (- indicates blank character)
Group | NSYMOP SYMOP | Operations
Doh 3 --Z--Y--X Xy, Xz, yz
D, 2 XY--YZ--- | C2;C2
Coy 2 -Y-X----- XZy yz
Con 2 ~ZXYZ- |y
Cy 1 XY------- c?
Cs 1 | -Z xy
Ci 1 XYZ----- i
Ci1 0 |-
Table A.2: Summary of basis le structure
Card | Input Format
1: KEYWR®D 'INTGRL' (A6)
2a: TITLE(1) (A72)
2b: TITLE(2) (A72)
3: CRT,NONTYP,NSYMOP,[SYIMIOR{, 3], T HRS | (BN,A1,14,15,3A3,1X,D10. 2)
For eat atomic type: I = 1,NONTYP
3.1 Q,NONT(I),QEXP (BN,F10.0,I5,F20.5)
For eadh symmetry independert certer: J = 1,NONT(I)
3.1.1: NAMN(NUCIND),[CORD(J,NND), J = 1,3] (BN,A4,3F20.0)
3.2 BSET,IQM(1),[JCO(J,1),J= 1,IQ M()] (BN,A5,1215)
For ead block: J = 1,IQM(I)
3.2.1: FRMT,NUC,NRC,ISGEN (BN,A,14,215)
3.2.2: [ALPHA(K),[CPRIM(K,L),L=1,NRC,K=1,NUC] | seetext
4. KEYWR®D 'FINISH' (A6)
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A.6  Output

les

A formatted output le is connetedto DIRA C through standard output. The user may
modify the output by setting various print levelsin the menu le. DIRA C willl in addition
produce a formatted le DFCYCtortaining a summary of the SCF process.In addition
to the formatted DIRA C producesa number of unformatted les. They are

Control les

DFEDIIS
DFEVEC

Coecien ts

DFCOEF
DFCMOS

One-electron

DF1INT

DFOVLP
DFTMAT
DFFCK1

Tw o-electron

information about DIIS process

direct accessle with DIIS error vector

MO-coe cien ts from current SCF-iteration

coe cien ts from current SCF-iteration in MO-basis
integrals and matrices

one-electronintegrals cortributing to one-electronFock matrix
overlap matrices
MO-transformation matrix

One-electron Fock matrix (in QO basis)

integrals and matrices

For ead integral class(XX = LL,SL,SS) in corvertional mode:

DFXXSA
DFXXSB
DFXXTA
DFXXTB
DFTWXX
DFEXXTB

In addition:

DFFCK2

sorted singlet integrals (both Coulomb and exchange cortributions)
sorted singlet integrals (both Coulomb and exchange cortributions)
sorted triplet integrals (only exdhange cortributions)

sorted triplet integrals (only exdchange contributions)

scratdh le of unsorted integrals from HERMIT

scratch le usedin sorting process

two-electron Fock matrix in QO-basis
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A7

Restart

DIRA C hasrobust restart facilities:

When calculating a new point on a potential surface, DIRA C can start from
the coe cien ts (the le DFCOEF from the two-electron Fock matrix in AO-basis
(the le DFFCHKZ2or from solutions of the one-electronFock matrix (bare nucleus
approximation). Default is to start from coe cien ts if the unformatted vector le
DFCOBEB presen; otherwise DIRA C usesthe bare nucleusapproxiamtion. Restart
on Fock matrix may be speci ed by the keyword .TRIFCK

When restarting on the same point on the potential surface, DIRA C needsthe
formatted le typ DFCYCL to update status of the SCF process. The full SCF
summary will be provided at the end of the current iterations, so that the output
le from the previous SCF iterations is generally not needed. In addition DIRA C
needsthe coe cien ts (le DFCOEFTo restart on DIIS, DIRA C needsthe following
les: DFDIIS, DFCMO)FFOC&nd DFEVEGSf DIIS is not requested, DIRA C
may restart on damping if the le DFFOCK presen.
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A.8 Test example

We considerthe calculation of the F,- moleculeas a test case. Notice the use of the hash
symbol #}to insert commerts and turn o keywords.

A.8.1 Basis le

INTGRL
Fluorine molecule. Experimental bond length: 1.4178 A
Basis: F9s5pld
c 1 3X Y Zz A .10D-15
# D2h - symmetry is specified.
9.0 1
F1 .000000000000000 .000000000000000 .70890000000000 *
LARGE 3 1 1 1
9 0 3
9994.7900
1506.0300
350.26900
# Commentsmay be inserted anywhere
104.05300
34.843200
12.216400
4.3688000
1.2078000
.3634000
5 0 3
44.355500
10.082000
2.9959000
.9383000
.2733000
1 0 3
1.6200000
FINISH
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A.8.2 Menu le

*DIRAC
.TITLE

Fluorine molecule.

.DIRECT
111
.DHFCAL
.DHFANA
.NSYM
2
#.URKBAL
*READIN
*DHFCAL
.NELECT
10 8
.PRINT
2
.DODAMP
0.25
.DODIIS
5000.0
The following

HHHHH

spinors.
.OFFSET
-100 -100
.SPINOR
100 100
.VECPRI
10
.EIGPRI
11
*DHFANA
.MULPOP
*END OF

Restr.kin.bal. Sph.tr.

three keywords specify
coefficients  for all
SPINORvery large values are given. These will
program downto maximumpossible values, that

spinors are to be printed.

that the large component

In OFFSETand

be modified
is printing

in the
all
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App endix B

Reduction of the Breit term to
non-relativistic  form

We considerthe Breit interaction

Breit _ 1 2, (1 r2)( 2 o) 8.1
g 2rqp 2I':1)’2 ( . )

It can be reformulated to [16§

gBreit — gGaunt + ggauge (B.Z)
The rst term is then the Gaunt-term
12
gGaunt - — (B.3)

and the secondterm is a gauge-degndert term

gauge — (2roC2r2)re B.4
wherer 1 andr » act only onry, and not on the wave function. We considerthe Foldy-
Wouthuysen transformation of the Breit operator to order (Z )2. In particular we are
interestedin the separatecortributions of the Gaunt and the gauge-degndert term. This
requiresthe evaluation of the anticommutator expression[40]

1 h - i
. . rel BS
ez (2 P2 (1 P2)ig ., (B.5)
which is quite a laborious task. Let us rst outline the generalstrategy for the evaluation
of the comnmutator expression. The comnmutator we want to evaluate may be written as

2iP2i;[ 4Py; 1k 2mMikml, (B.6)
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where My, is a function of r1», and symmetric with respect to particle exchange
M = M(rz) = M( ra); r2=ri rz (B.7)

The commutator consistsof a spacepart, represened by momertum operators and coor-
dinates, and a spin part, represerted by Dirac -matrices. The latter go into Pauli spin
matrices in the two-componert form. The spin part is best handled using anticommutator
relations, in particular the relation

[ s jl, =2 (B.8)
whereasthe spacepart is besthandled using commutator relations. We will thereforerear-

range the commutator expressionto a form that alows a more straightforward evaluation.
We then employ the commutator relations

[AB;C] = AI[B;C] + [AC] (@
[A;BC] = [AB]C + BI[AC] (b (B.9)
[AB;C], = [A;C],B + AI[B;C] (0
[A;BC]l, = [A/B]LC B[A;C] (d)

Consider rst the inner anticommutator. Using Eq.B.9c it can be expandedas

[ 4Py 1k 2mMimly =1 35 % 2mMiml, Py + 35 [Py; 1k 2mMim] (B.10)
Using EQ.B.9d the rst term is rearrangedto

[ 145 w 2nMimli Py = [ 35 wle 2mMimPy [ 47 2mMimlpy (B.11)
= 2jk 2mMkm Py
and using Eq.B.9b the secondterm becomes
1 [Py;  2mMkm] = 3 [Py; 1k 2m]Mkm + 3 1k 2m [P1j; Mkm] (B.12)

= 1 1k 2m[P1j;Mkml]

The two surviving terms are processedhrough the outer anticommutator usingthe same
techniqguesand nally givesfour terms

2iP2i;[ 4Py; 1k 2mMiml, , = 4Mj pupy (@
+ 2 2 om [P2isMjmlpy (b) (B.13)
+ 2 15 1k [Py Mkil pai (@)

+ 2 om 3w [P2is [Py Mkm]l  (d)
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The nal term can be simplied by noting that

[P2i; [P s Mkm]l = (P2i Py Mkm) (B.14)

where the parerthesis indicate that pyipi; act on My, and not on the wave function.
Products of - terms are handled by the relation

R EARTE: (B.15)
Considerthe Gaunt term . We make the identi cation
Mim = kml1s (B.16)

which meansthat we needthe relations

. 1 - 3
[STHED) = Mo
. 1 - : 3 .
P2iirq5 = Ir 15112 (B 17)
DTt = Brioirioira> 4 =3 . r 3
P2iPjryo = r2if12i 15 ( ) (ri2) ij ij M2

The latter relation may be comparedto Eq.(2.96) in Moss[40]. The cortribution from the
Gaunt-term to the Breit-P auli Hamiltonian is therefore

nt . 1
geaunt m(m P2) (a)
1
m[ 2 (riz po)+ (riz ra)l (b) (5.1
+ 2m27i2r§’2[ 1 (riz p2)+ (raz r2)] (©)
1

a2z 2 P2 (1 p)( 1 Al (d)

Further processingand replacing with  gives

goaunt ﬁ(pl p2)
+ 2m27i2r'f2[ 1 (riz p2) 2 (riz pa)l
+ lecz (1 2 3rp(1r2)(2r) B=B)(1 2) ()
2m27(:2@,2(&2 I 12)

1
22 (ri2)

(a)
(b)

(d)
(e)
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For gauge-dep endent term we nd

1
Mkm = Er 1kl 2ml12

(B.19)

(B.20)

where we again note r 1 and r , act only on ri»> and not on the wave function. The
contribution from the gauge-degndert term to the Breit-P auli Hamiltonian is therefore

1
goavge smzca’ 27 4T12Py P (a)
1
+ m(rlz rai) (b)
m(rlz ro) (@)

* ﬁ(zrz)(zfz)(lrl)(lrl)rl2 (d)

The nal term may be collapsedinto

2, 2
—8m202r 1r or12

Further processingand replacing with  gives

1
geauge m(pl raPz r 2)r (a)
1
+ 2m27(:2@2012 r1o) (b)
1
+ M2 (ri2) (@)

The reducedBreit term is obtained by combining Eq.(B.19) and Eq.(B.23):

geret M2 r17 (P1 p2) + E(pl ro2 r 2)re
1
+ 2m2c2r3_[ 1 (ri2 p2) 2 (ri2 p1)l
12
1
t o (1 2 (1) (2 r) (8 B)( 1

(B.21)

(B.22)

(B.23)

2) (ri2)
(B.24)

(a)
(b)

(©)
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The rst term in Eq.(B.24) is the orbit-orbit interaction in the form given by Huang [146,
wherer 1 andr , operateonly onri, and not on the wave function. It is straightforwardly
rearrangedto its more familiar form

1
M2 rz (P1 P2)+ 17 (P1 ri2) (P2 T12) (B.25)

Note that the two forms of the orbit-orbit interaction correspondsto the two forms of the
Breit term.
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App endix C

Symmetry in relativistic systems

C.1 General overview

Theses notes are based on tw o lectures held at the University of Tr oms
December 1994.

The full symmetry group of a dynamical systemconsistsof all operatorsthat commute
with its Hamiltonian. Symmetry operations are unitary or antiunitary . Here we will only
considerunitary symmetry operations acting on spatial and spin coordinates of the system.
The non-relativistic Hamiltonian hasthe generalform

A="1T+Y¥ (C.1)

The kinetic energyoperator T istotally symmetric under any symmetry operation, whereas
the potential energy operator ¥ determinesthe symmetry of the system. In molecular
systemsthe translation of the certer of massis separatedout, sothat our discussionof
symmetry will belimited to point group operations that keepat least one point xed. We
may write a generalpoint group symmetry operator as

G=6(rn;p)6 ( insp); p=01 (C.2)

where G" ( ;;n;;p;) and & ( ;n ;p) act on spatial r and spin  coordinates, respec-
tively. They have the form

S(;n;p=1PR(;n) ; (p=01) (C.3)

where represen inversionand R (; n) is a rotation  about an axis given by the unit
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vector n. Special casesare

Rotation: G(; n;0)
Inversion: G(0;n;1) (arbitrary n) (C.4)
Re ection: G( ;n;1) '

Improper rotation: G (; n;1)

The action of a symmetry operation on a function is determined by its action on the
coordinates

S (Gr; = () ) G ()= (G ) (C.5)

The non-relativistic Hamiltonian is spin-free, which allows a separatehandling of spin
and spatial symmetry. The spin may be integrated out of equations and one may form
spin-free functions adapted to point group symmetry. In the relativistic domain the spin
and spatial degreesof freedomare coupledand no such separationis possible. In a molec-
ular systemwith an even(odd) number of electrons, the eigenfunctions of the electronic
Hamiltonian have integral(half-integral) spin and may be denoted boson (fermion) func-
tions. A striking di erence betweenbosonand fermion functions, is that the latter type
functions change sign under a rotation 2 about an arbitrary axis, which has in fact
beenveri ed experimentally in both neutron and NMR interfermometry experiments. For
bosonfunctions a rotation 2 correspond to the identity operation.

The symmetry of fermion functions is usually handled using double groups Double
groups are introduced by adding an extra elemen E represering a rotation 2 about
an arbitrary axis and therefore commuting with all symmetry operations. By this 'tric k'
it is possibleto recover all the results of standard group theory. In these notes we shall
derive explicit represenations of the various point group operations in spatial and spin
coordinates. We shall seethat the resulting represettations for rotations are completely
congruert with what is obtained from double group theory. For improper rotations in-
volving, there is a decisive di erence that requiresfurther exploration.

C.2 Notation

In what follows we employ the following notation

the Einsteins summation convention: a repeatedindex is taken to mean summation
over all possiblevaluesof the index

the three-dimensional Levi-Cevita symtol

8
< +1 ifijk is an even permutation of 1,2,3

ik = 1 if ijk is an odd permutation of 1,2,3 (C.6)
' 0 for all other cases
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We note the relation ik ilm = jI km im ki
Using the above notation scalar and vectors products may be expressedas
A B = AiBj; A B =g jjkAjBk (C.7)

wheree; are unit vectorsalongthe main coordinate axes. Alternativ elym, a vector product
can be written asa3 3 determinant

€1 € €3
A B = A1 Az A3 (C.8)
B:1 B, Bj

from which we seethat a general3 3 determinant can be expressedin terms of the
Levi-Cevita symbol

A1 A Az
det(A) = Az Az Azz = jjkA1uAzAzx (C.9)
Az1 Az Asz

We may generalizeto

i kAL Am Ank = 1mn det(A) (C.10)

C.3 Rotations

C.3.1 Rotation about main axes

A rotation ! of a function about the z axis correspond to a rotation ! of coordinates:
x® = rsin cos( 1)y = rsin cos cos! +rsin sin sin!
= x cos! + ysin!
y? = rsin sin( 1)y = rsin cos sin! +rsin sin cos! (C.11)
= xsin! + ycos! '
20 = r cos
= z

Consider an in nitesimal rotation d! about the z-axis. We usethe relations
sindl  d' ; cosd 1 (C.12)
which gives

da’= x° xy° yv:z2° z =(y; x0)d! (C.13)
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The resulting function may be written asa rst order Taylor expansion:

() Mrd T () =[rd o xd%)] M =1 df] @) (€14

From the equivalenceof the main axeswe conclude

1 d!f} | innitesimal rotation about the x-axis
1 d f\y in nitesimal rotation about the y-axis (C.15)

1 d!f} | innitesimal rotation about the z-axis

C.3.2 Rotation about arbitrary axis

We consider an in nitesimal rotation d about an arbitrary axis identied by the unit
vector n. We employ the notation R (d; n) to describe this rotation. By geometric
construction we nd

dr= d (n ) (C.16)
Insertion in a rst order Taylor expansionof the rotated function gives

(ro) (r+drr (r)= (r) dn rr (r)y=[1 dn (r r) (r) (C17)
This allows the identi cation

R;n)=1 id n f (C.18)

wheref is the angular momertum operator (in atomic units)
f=¢ p= i(r r) (C.19)

The operator for a nite rotation is generatedfrom in nitesimal rotations

k k
. — . — i - R 1O )
R(: n) = lim R N Jm o1 i n e (C.20)

C.3.3 Angular momentum | a short rep etition

In the previous section we have seenthat the operators for angular momertum are gener-
ators for in nitesimal rotations about the main axes. We therefore give a short summary
of angular momertum theory.



C.3 Rotations

251

Genral angular momertum operators are de ned from the commutation relations
h i R h i R h [ R
aly =iz 50 Iyidz =il o Jzlx =1ily (C.21)

—>
—>

=if (C.22)

f2im = J(+1 jm

P im = m im (C.23)
We introduce ladder operators {'+ and |

;=0 iy (C.24)
whoseoperation on

P oim="GGFD mm D) o s (c.25)
For later usewe note the relations:

=Gt 3) G dy= isGe Q) (c26)
C.3.4 Matrix representations of rotation operators
The product of two rotations is a rotation. The set of rotation operators

R(:n)y=e! 0D (C.27)

form a corntin uous group, the full rotation group R3. Irreducible represertations of the full
rotation group are labeledby j and are (2] + 1)-fold degenerate.Matrix represenations of
T and R(; n) may be constructed in a basisf jmg for any j. In this sectionwe consider
matrix represetations of j = %ogj = 1.

Case 1. j = 1

Basisfor j = % are the spin functions and and we setj = s. We have the relations
s, =3 s, = 3
sy =0 s = (C.28)
s = s =0
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from which we obtain the matrix represenations
~1 1 o0 . 1 01 ~1 00
%2 0 1 7200 °72 10 (C.29)
Using (C.26) we obtain
_1 01 _ _1 0 i
T3 10  ¥T3 i o (C.30)
In sum we have
1
s= > (C.31)
where are Pauli spin matrices We note the property
T T =]
ij= i Tk k= ik K i 6] (C.32)
Important relations are
( A)( B)=A B+i (A B) (C.33)
and
( A B)( ©) (C.34)
=iA B C)+( A)B C) ( B)Y(A C)+( C)(A B) '
Matrix represenaitons of the rotation operators for j = % is obtained from
1 i 1 il X l m
Rz(;n)=e' 91 Ra(;n)y=e'z ()= (jm 2m| (n )™ (C.35)
m=0 )
Considerablesimpli cation is obtained by noting that
(n )2=nj iNk k= Nini+1ijx injng=1+1i (n n)=1 (C.36)
which implies
(n )¥=1; (n Y™=n ) (C.37)
We may therefore write
1 P . 13N
REGN) = o P& @y
P ] 1 2n ] 1 (2n+1)
= n=0( I)Zn((zzn))! (n )2n+ n=0( |)(2n+1) (2(2r)1+1)! (n )(2n+1)
P 1 2n ] P 1 (2n+1)
RPPY G ICIC G LN L 0
= cos; i(n )sini

(C.38)
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Case 2. j =1

As basisfor j = 1 we may usethe spherical harmonic functions

Y1 = 3 siné |/ phs (x + iy)
Yio = 3 cos |z (C.39)
Y1 = g sine' [/ pS(x y)
In the basisof these functions the angular momertum operator is represerted by
2 3 2 _ 3 2 3
1 010 1 o i O 1 10 O
lk=p=410 15 ; ly=p=4i 0 i3 ; I,=p=40 0 05 (C40)
2. 010 2.0 i o0 2. 00 1

We shall, howewer, use a basis of Cartesian coordinates (q; = X,(p = Yy 0g gz = 2) to
generate represettations of the angular momertum and rotation operators. som basis.
The angular momertum operators may be written as

= i@ r)= e A (C.41)
sothat elemerts of represertation matrices in the Cartesian basisis given by
D E D E
g T = ieim g G5 % = i€ im kmhgjqi (C.42)
= i€ iilm km jIW = g jk
The full represenation matrices can now be written as
2 3 2 2 3
00 O 0 0 i 0O i 0
x=400 i5 ; y=4 000> ; ,=4i 005 (C.43)
0Oi O i 00 0O 0O
In the coordinate basisthe rotation operators are given by
A : X (H)m
RGm=e! D1 RY(Gn)=e'®)=" (i)m—(n )" (C.44)
m=0 m:
In order to obtain a matrix represetation of R! we usethe relations
(n ik = injjk
(N m = NNk Ikm = i Cim j1 il jm)
= _njnm +NiNj jm = jm njnm. (C.45)
(n )3, = Nk wj Cjm  NjNm) = iNk am + Nk Nm - kj
= Nk kim = (" im



254 Ch.C Symmetry in relativistic systems

We may conclude
h )Y¥=m )=1 n n ; (n ™) =n ) (C.46)

Note that the relation (n )3 = (n ) doesnot imply (n )? = 1 soncethe matrix (n )
is singular. We now write

P n
o DY (n )"

P P o
= 1+ = 1( |)2n (2n)l (n )Zn + n=0 ( |)(2n+1) ((2)n+1)| (n )(2n+1)

RY(; n)

= 1+ (n )2Pnl( 1)2 +i(n )Pnzo( 1)2”&

(2n)' @n+1)!
= 1+ (@ cos )(n )%+i(n )sin
(C.47)

Using the trigonometric identities

cogl + sir? = 1

cos’-% smﬁ = cos (C.48)
this is simpli ed to

RI(;n)=1+i(n )sin 2(n )2sin2% (C.49)

C.3.5 Homomorphism between SO(3) and SU(2)

Consider the transformation of the Pauli spin matrices under the rotation operators
R(;n) jRY(;n)=R(;n) jR( ;n)= iAj(;n) (C.50)
This is best done by consideringthe transformation

R(;n)( mR( ;n)

cos; i( n)siny ( m)coss +i( n)sin3

m)cogi +i[( m);( n)lcoss siny +( n)( m)( n)sin’i

(
( m)cogl + (n m)sin +[2( n)(m n) ( m)sin®i
( m)+ (n m)sin +[( n)(m n) ( m)]2sin®}

(C.51)
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Setting m = e jk the transformation of individual j can be singled out. After reindex-
ation we nd

o1
Ajc(Gn) = j okt jnijkt j(njng jk)ZSlnzé (C.52)
Comparison with (C.49) shaws
Ajk (5 n) = Rjk(; n) (C.53)

It can be shawvn that the unitary transformation matrices R%(; n) have determinant
1 and form the special unitary group SU(2), whereasthe matrices R (; n) form the
group SO(3) of orthogonal matrices with determinant 1. The transformation of Pauli spin
matrices under elemerns of SU(2) provide a mapping of SU(2) into SO(3). The mapping
is straighforwardly shown to be a homomorphism, but it is not single-walued sincewe have

Rz(( +2);n)= Rz(;n) (C.54)
whereas
RI(( +2);n)=R(; n) (C.55)

We seethat rotations represened by R1(; n) have periodicity 2 , whereasrotations
represerned by RZ (; n) have periodicity 4 . This is of consequencevhen we consider
irreducible represertations.

C.3.6 Direct product basis

The spin functions and form a basisfor rotations j = % A basisforj = 1 (andj = 0)
in terms of spin functions is generatedby forming the direct product
2 3

= § é (C.56)

The resulting functions are however, not all eigenfunctionsof { og {%;, but this can be
corrected by the transformation

1 0 o0o0°2 87 ° GTTRY
0 F 0 =( + ) j1; Oi

E 0o 0 0 1z§ Zzg i z: }1; 1 é (C.57)
0k 850 P ( ) jo; G
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This gives the three componerts of a triplet in addition to a singlet function, which is
what is expected from the coupling of two spins. We may construct a spin analogueto
the Cartesian basis(C.39)as well by the transformation

2 3
10 01°% ° 7 ( )
16 i 0 0 A+ )
P—§§ cI) 11 éég Z=§ pl_;( N )z (C.58)
01 10 e )

We may form corresponding direct products of the symmetry elemers, e.g. a rotation
about the z -axis:
3

N[

-

By transforming to the coordinate (Cartesian) basis (C.58) we obtain as expected

Z (C.59)

o o
@

N

o o
@ O
NI

[ e el
oo o
o rr OO
D.O O O

2 i 3
cosS  sin 00
sin cos O OZ
g 0 010 (C.60)
0 0 01

C.4 Inversion
The properties of a vector under inversion allows a classi cation of vectors:

f r (polar) vector

= r axial vector (pseuadvector) (C.61)

An example of a pseudovector is the angular momertum vector. Correspondingly scalars
can be classi ed as scalar or pseudoscalars.

A a scalar

4T a pseudoscalar (C.62)

The inversion operator 1 commute with all rotations. This is straightforwardly seen
from the e ect of rotation and inversion on the coordinates:

R(G;migi=RGn)( g)= gA;i(;n)=1qgAji(;n)="R(;ng (C63)
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From the above relation it becomesclear that the represertation matrix for inversionin
coordinate basisis

2 3
1 0 O

iir=4 0 1 05 (C.64)
0 0 1

which is an ortogonal matrix with determinant -1. From the form of this matrix we may
deducethe represeniation matrix for inversionin the basisof spin functions and

2 3
1 0 0 O
i 0 i 0 _g 0 1 o0 oé
0 i o i 4 0 0 1 o0 (C.65)
0 0 0 1

We have setthe scalarcomponernt equalto 1 correspondingto a pseudoscalar. The4 4
inversion matrix is invariant under transformation to coordinate or spherical harmonic
basis.

Note that the represertation matrix for inversionin spin basisare of order four:

i= iy 2= Uy i¥=ily it=1, (C.66)

C.5 Spatial symmetry in relativistic systems

The spin operation may be chosen freely since the non-relativistic Hamiltonian is spin
free. We next considera relativistic systemand indicate this approxiamtely by adding the
spin-orbnit operator Mg,

Ro=c (rV p) (C.67)
We considerthe transformation of M, under a generalsymmetry operation Ri (C.2):
kec | ijk%jpkﬁry
=c6 m;p® 6 m kG nngp) 56 () V
G rineip) kG rineipr)

=cC ijkq_annAIi( ;M) Amj ( rsne) Ak (riny)

(C.68)

where we have usedthat the potential V is totally symmetric under the point group. We
seethat B, is not totally symmetric under Qi. Howewer, by inserting = andm = n,
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we obtain
QrC i ijk%jpkﬁ?’
=C ijkq_\r/npnAli( ) Amp ( rne) Ak (Crsny)

(C.69)
C 1l imn q_\;pn det[A ( r;n)]

Vv
C | imn mpn

where we have used (C.10) and the fact that the rotation matrix A has determinant 1.
From the above we seethat symmetry operatorsin relativistic systemsare generally given
by:

k=G(rnp)G  inesp (C.70)

that is, the operation in spatial and spin coordinates must be identical.

C.6 Double groups

C.6.1 Binary symmetry operations

Let us rst look at binary operations ass@iated with the main axesin spin basisthey are
represerned by

E Identity ! I
C»(x) Rotation about the x-axis ! i x
C»(y) Rotation about the y-axis ! Iy
. vie | .
;(\:2(2) Rotatlgn about the z-axis ! |. z (C.71)
I Inversion ! il
Nz Re ection in the yz-plane ! X
";X  Reection in the zx-plane ! y
Y Re ection in the xy plane ! z

C.6.2 Example: D,
Considerthe group D, = fE; Cy(2); Ca(y); C2(x)g. The group multiplication table gives

E | C2(2) Ca(y) Ca(x)
Ca(2) | E Ca(x) Ca(y)
Ca(y) | Co(x) E Ca(2)
Ca(x) | Ca(y) Ca(z) E

(C.72)
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The corresponding multiplication table in spin represenation is er:

I x
. , . (C.73)
| y | X I 2 | Z
i X i y i z |2
By comparisonwe seethat the multiplication tables dier by phasephactors
1 1 1 1
1 1 1 1
1 1 1 1 (C.74)
1 1 1 1

causedby the double periodicity of the elemerts. A correct represenation may be obtained
in two ways;

by a projective (ray) represertation instead of the regular vector represenation
GiGj = G¢) D(G)D(Gj) = ! (Gi;Gj)D(Gy) (C.75)

where! (Gj; Gj) is phasefactor that dependesof the order of operators G;; G; .

Double groups: The periodicity of binary operations i extendedfrom 2 to 4 .

Double groupsare usually intro ducedby adding an extra elemer E represering a rotation
2 about an arbitrary axis and therefore commuting with all symmetry operations. We
shall proceeda bit more stringently using our represenation in spin basis The elemer E
is the result of two binary operations about the sameaxis and is therefore represened by

E=R(:n)R(:n)) E= i( n) i( n)= I, (C.76)
By introducing the notation C, = C,E we obtain the following multiplication table
E Ca(z) Caly) Ca(x) E Ca(z) Ca(y) Cax)

Ca(2) | E Ca(x) Ca(y) Cao2) E Ca(x) Caly)
Ca(y) | Ca(x) E Ca(2) Caly) Ca(x) E Ca(2)
Cao(x) | Caly) Ca(z) E Ca(x) Cofy) Cao2) E (C.77)
E Ca(z) Caly) Ca(x) E Ca(z) Caly) Ca(x)
Ca(2) | E Ca(x) Caly) Ca(z2) E Ca(x) Ca(y)
Ca(y) | Ca(x) E Ca(z) Caly) Co(x) E Ca(2)

Ca(x) | Caly) Co(2) E Ca(x) Cay) C2(2) E
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In order to construct a character table the distribution of symmetry operations among
classesneedto be determined. Two operations belong two the sameclassif there exists
a third elemen in the group that bring the corresponding symmetry elemerts into eat
other. aswe have introduced periodicity 4 , C, og C, 1 are no longer identical. C, og
C, ! belongto the sameclassif the group cortains a binary rotation normal to the rotation
axis or if the group cortains a vertical plane. A horizontal plane will reversethe direction
of the axis, but alsothe direction of rotation, sothat the two e ects cancelout.

In the double group D, we have binary operations perpendicular two ead other,
so that elemens C, og C, are in the sameclass. The double group D, therefore has
v e classed (E); (E); (C2(2); C2(2)); (Ca(y); Ca(y)); (C2(x); C2(x))g , and thereby v e ir-
reducible represenations. We have one extra irrep comparedto the singlegroup D,. The
extra irrep is spannedby functions with half-integer values of angular momertum and
they are therefore denoted fermion irreps. The regular irreps spannedby integer values of
angular momerntum are the termed bosonirreps.

The double group D, has a total of eight elemers, so that the extra irrep must be
twodimensional (it follows from the conditiona that the sum of squaresof the dimension
of irreps equals the number of operations). This allows us to construct the following
character table:

D2 E E 2Cy(2) 2Ca(y) 2Ca(x)

A1 1 1 1 1 e )

B 1 1 1 1 1 z pl—i( + )

B 1 1 1 1 1y B=( + ) (C.78)
Bz 1 1 1 1 1 x )

E. 2 2 0 0 o ()

We seethat the bosonirreps duplicate the correponding irreps of the single groups, which
is understandablesincethey are spannedby functions for which the symmetry operations
have periodicity 2 . The character of E for the fermion irrep follows from its dimensional-
ity. The sameholds for the character of E, but now with a minus signsinceE = 11 .
The character of the other operations can be deducedfrom the little orthogonality theo-
rem.

In the character table we give examplesof spin functions that span the various irreps.
They can be obtained by projection operator. Note that the componerts of the triplet
do not span separate boson irreps, but form linear combinations corresponding to the
characters.



App endix D

Diagonalization of guaternion
Hermitian matrix

We will considerthe diagonalization of a quaternion Hermitian matrix
H=Ho+Hy +Hp + Hgk=H{) H] HJ HIk=HY (D.1)

From the condition of Hermiticity we seethat Hg is a real symmetric matrix, whereas
Hf1 34 arereal antisymmetric matrices. The diagonalization of H proceedsin four steps:

1. Reduction to quaternion Hermitian tridiagonal matrix by a quaternion analogueof
the Householdermethod

2. Reduction to real symmetric tridiagonal matrix
3. Diagonalization of real symmetric tridiagonal matrix
4. Bacdktransformation to obtain eigervectors

The rst two steps are handled by the routine QHTRINd the nal step by QHTRBK

The third step is hadled by the standard TQLZ2routine using the QL algorithm which

is described in [169. When only eigervalues and no eigervectors are desired, the routine

TQLRAIE calledinstead of TQL2and executionterminated after obtaining the eigervalues.
A quaternionic number g and its conjugate q is given by

g=a+b+c+dk;, g=a b c dk (D.2)

in which the quaternion units , and k obey the following multiplication rules

2 - 2:kzz k= 1 (D.3)
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From these multiplication rulesit follows that quaternion number do not commute under
multiplication

[ag + iaz + jag + kay][by + ibz + j bz + khy]
[ahy  axlp, ashs  ashy]
[aihy + agly + azhy  asby] (D.4)
[aals  apxhy + agby + asly]

klaghy + @b asbp + ayby] 6 qoa

Note, howewer, that the real part of the product is independert of order. This meansthat
in devising an algorithm for quaternion diagonalization great care hasto be taken in not
reversing the order of quaternion multiplication. The routine for quaternion number is in
its ertirely written in terms of real variables.

GaOb

+ + + 1

D.1 Quaternion Householder matrices
We considera quaternion Householdermatrix P of the form
P=1 2w wY; jwiP=ww=1 (D.5)

The matrix P is unitary as

PYP = P2= 1 2w wY 1 2w wY
1 2w wYy 2w wy+4w wY w wY (D.6)
= 1 2w wY 2w wY+ dwijwj’ wY = 1

We now expressthe matrix P as

_ u uYy 1. .
P=1 —/— H Siuj (D.7)
where u can be any vector. We choose
.. X1
U= X+ Jxj—e D.8
X e (D.8)
where e; is the unit vector [1;0;::: ;O]T and x is an arbitrary quaternion vector. This
gives
H = Juwu
.. X .. X1
= xY + jx %e X+ |]X] —€ (Dg)
J JJXlJ 1 J JJXlJ 1

= jxj?+ jxjjxij
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We then considerthe action of P on the vector X:

u X
= — y 21
P x X v hx +jx1jxljell X
-y - M7+ 1 J’XXlljj D.10
iXj% + jxjjxa] (0.10)
= X U
= X j);—ijel

We seethat P operating on x givesa vector in which all elemerts are zero except for the
rst elemen, which is 2% JX J We may note that operating on x with

X1
— D.11
1Xa) ( )

givesa real vector in which all elemers are zero except for the rst , which is jxj.

D.2 Reduction to quaternion Hermitian tridiagonal matrix

We want to reduce a quaternion n  n Hermitian matrix H to a quaternion Hermitian
tridiagonal matrix T through a nite seriesof quaternion unitary transformations. Using
guaternion Householdermatrices (D.7) this may be accomplishedin n 2 steps.

Our quaternion Hermitian matrix H may be written as

[[n 1] [1]
H=HO = In 1] A © b© (D.12)
[1] pb©@y pg@©
where
bOY = [hn1;hn2; hnss i hon 1l BO = hnn (D.13)

We now choosea Householdermatrix of the form

u(l)u(l)y. 2

W o 1
P = 97 D QW =1y ——i H=3u® (D.14)
with
B® 2
u@®Y = pOY + O ﬁe(” p; H= b "+ bO g (D.15)

(n 1)
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The unitary transformation PMWA QP @) then gives

WAOQW QWpHO
WaOp@ = Q Q¥ Q
PEATPT = Thovgw g (D.16)
with
0 2 © 3
b@OQW = HO %e(n y=40,0:::;0 b© Eg) )5 (D.17)
b(n 1) h(n 1)

We seethat the elemens of b(® has been zeroed out, except for the nal elemen. We
may now write the transformed matrix as:

‘ i ( )2] ([)2]
i i
po - M2 bA(l)Y b*> 0 (D.18)
@
[2] 0 B
where
2 (0)
h(l) b(O) b(n 1
(n 1);(n 1) B0
B@ = E o n (D.19)
b® 50 i
Bn 1)
After step (i 1) our quaternion matrix hasthe structure
| In il 0
iy il AU b® Dol D (D.20)
. b @y i1 '
[i] oil Dy B
HereOl Disa(i 1) (n i) zeromatrix while B0 Disai i quaternion tridiagonal
matrix. For step i we introduce the index m dened by m = n i and choose the
Householdermatrix
. M o . uy®y 1 .2
pi) = Q b M= . H=Zul® D.21
oi || ’ Q m H ’ 2 u ( )
with
Rl 2 . .
@y = pl Dy p@ D Mo H= p® + pi g (D.22)

b%'\)
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After (n 2) stepsthe quaternion Hermitian matrix H hasbeenreducedto a quaternion
Hermitian tridiagonal matrix T:

y2
T=VHV Y, v=  pO (D.23)
i=1

D.3 Reduction to real symmetric tridiagonal matrix

The quaternion Hermitian tridiagonal matrix T o hasthe structure

3
2 2
h? 2 3 2 o i 0 0 0
ht 2 h 2 2 0 0 0
0 2 a3 . 0 0 0
Tg= : : : : : : (D.24)
o /@ 2
0 0 0 i hyl oy g (1)0() 0
2 1
0 0 0 c®@ hiw 5o 1 <P
0 0 0o 0 c® h)
where
i hi b
)= i D (rh) S U (_m+1) ;m (D.25)
b(' 1) h(' 1)
(m) (m+1);m
We now considerthe unitary transformation
Tr= 'Tq ; o= = 0 (D.26)

transforming T o to a real symmetric tridiagonal matrix T r using the quaternion unitary
diagonal matrix . For the casen = 3 the transformation is

2 32 32 3
TR= YTQ = 4 0 2 0 54t21 t22 t3254 0 2 05
0 0 4 0 t3p ts3 0 0 3
2 (D.27)
1tz 1 1ty 2 0
-4 5

oto1 1 Ltap o Ltz 3
0 ala2 2 3t3z 3
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Using the unitarity of and the fact that the diagonal elemens of T o are real, we
obtain:

2 3
0 332 2 ta3
We then nd:
3 = 1
, = ts)
jta2] (D-29)
tyy t3p _ Uy

jtoafjtaa)  jtaa) °
Generalizingwe nd:

R 0) hee
_ — m+ ;m
mS o =iy ey (<msn) (D.30)
(m+1) ;m
n = 1

D.4 Implemen tation of tridiagonalization

We now considerthe computational expressionsfor the reduction of a quaternion Hermi-
tian matrix to a real symmetric tridiagonal matrix. We rst considerthe matrix:

A(i l)Q(I) - A(I 1) Im U(I)u(l)y _ A(| 1) p(i)u(i)y (D31)
where we have intro duced the vector p():
Al Dy
o = D.32
p . (D.32)
Note that due to the hermiticity of A we have:
. Myal D
ply = L7A° (D.33)
H
The full Householdertransformation of the subblock A (D of the matrix HU D then
becomes: .
(i) (i)y# i
QWAl D) =, LY Al D Oyl

H (D.34)
Al D pOy®y  yOpMy+ 20K yOy
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where we have introduced the scalarK de ned by

" #
(Mya @ 1
ut YA u
—ohz (D.35)
K is real due to the hermiticity of A:
" (Mya @ 1 #
ul YA DYy
el K (D.36)
If we write
g p Ku (D.37)
then we have
QA DM = A D giyMy by (D.38)

This is the computationally useful formula.

D.5 Eigenvectors

The complete tranformation of the quaternion Hermitian matrix H to a real diagonal
matrix  is given by

=UYHU; U=V O (D.39)
with
VvV = Q{‘:lzP(i) - reduction to quaternion Hermitian tridiagonal matrix
-reduction to real symmetric tridiagonal matrix (D.40)
0] -reduction to real diagonal matrix

The transformation from a real tridiagonal to real diagonal matrix is handled by the QL
algorithm, described in [169. From the eigervectors obtained from the real tridiagonal
matrix we may bacdktransform to the eigervectors of the quaternion Hermitian matrix. In
the rst stepthe eigervectorsof the quaternion Hermitian tridiagonal matrix arerecovered:

X0
U@ =1 O] = ik ikOkj = KkkOKj (D.41)
i=1
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Then follows (n-2) stepsin which the eigervectors of the full quaternion Hermitian matrix
are recovered. In stepi we have

. . . Omi 7 7 Q 7
Z(I) — P(I)z(l 1) - Qmm mi mm mi - mm 4&mn D.42
Oim i Zim Zi Qim Zin ( )

A computational useful formula is found by expansion:
I

X X na
[QZ]kj = QuZj = kI qu' Zjj = Zkj  UkSj (D.43)
|
where we have introduced
Xy
5= Uz, (D.44)



App endix E

Angular part of atomic 2-spinors

In these notes angular 2-spinorsand corresponding spherical harmonic functions are tab-
ulated and plotted. The density plots appearing in thesenotes have beenmade by Jon K.
L rdahl.

The angular functions .y, appearing in the solutions of the Dirac equation for hy-
drogenlike atoms can be written the angular part of the hydrogenic solutions to the Dirac
equation

2 g .3
L a |+ 3+amyy ' ?
m; = Pﬁg q ) Z (E.1)
|+1 . mj+§
3 amY
where
=a(j+1=2): a=2( D= 1 (E.2)

The Y™ are spherical harmonic functions (with the Condon-Shortley phase corvertion)
[70]

S

Y () (™ %%le (cos )em (E.3)

de ned in terms of assciated Legendrefunctions

1 m=2 d|+m |
PP = o 1 x° Ve 21 m (E4)
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part of atomic 2-spinors

E.1 Spherical harmonics

For referencewe tabulate the spherical harmonicsup to | = 3

[ | m, Ni.m | polar form Cartesian form
g
1] 0 = | cos z
q— .
1| 1 = |sin e (x iy)
G—
2| 0 & | 3cos? 1 222 x2 y?
q— .
2| 1 2 1cos sin e Xz iyz
a4 — .
2| 2 2 |sin? e 2 x2 2ixy y?
G—
3] 0 . 23| 3cos®  cos 228 3%z 3y?%z
3| 1 &L |sin 5cos?  1e! |4xz? idyz?2 x3 ix%y xy? iy?
q _— .
3] 2 195 |sin2 cos e ? x°z 2ixyz vy%z
a4 — .
3| 3 = |sin® e d x3 3ix2y 3xy? iy3
(E.5)

Densit y Plots:
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E.2 2-spinors

In this sectionwe list the angular 2-spinorsup to j = 7=2. We usethe notation (l)(j; m;)
where (1) = s;p;d;f with referenceto the angular quantum number I.

orb orb
p 33 Y11
1.1 qIY qu 3.1 qzy_ qty
P 355 3710 3711 || P 503 3710 3711
p 1l 1 qu_ qu_ 3. 1 qu_ qEY
5 3 31 1 3710 p 5 35 371 1 3710
p3 3 Y1, 1
d 33 Y22
d 33 qu, qu d 53 qu. qty
212 57121 5122 212 57121 5122
d 31 qzy, qu d 51 qu. qzy
212 5 12,0 57121 212 5 12,0 57121
d 3 1 qu qu d s 1 qu_ qu
21 3 512, 1 57120 21 3 512, 1 57120
d 3 3 qu, qu, d 5 3 qty. qu
21 2 512, 2 512, 1 2r 2 512, 2 512, 1
d 3 3 Y2, 2
f i Y33
f 2-3 qu, qu, f 1.5 qu. qu
212 7 13,2 7 13,3 212 7 13,2 7133
f 2-3 qu. qu_ f -3 qu_ qu
213 7131 7 13,2 213 7131 7132
f 35-1 qu qu_ f Z-1 qty_ qu
213 7 13,0 7131 212 7 13,0 7131
f 2 1 qu, qu, f 1.1 qu. qu
2r 2 713 1 7 13,0 21 2 773 1 7 13,0
f 2. 3 qu, qzy, f 1. 3 qu qu
2r 2 7713 2 7713 1 21 2 7713 2 7713 1
f 2 3 qu_ qu_ f I 32 qiy qu
21 2 713 3 713 2 21 2 713 3 713 2
f I 2 Y3 3
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